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Outdoor air pollution is one of the main problems affecting human health in urban areas all 

around the world. Therefore, it is no surprise that air pollution control is currently a major 

concern for citizens. Although emissions of most air pollutants have decreased substantially 

over the past decades, their concentrations still exceed the legal limits in most countries, 

indicating that air pollution control continues to be a challenge for modern societies. Every year, 

more than 4.2 million people suffer an early death because of outdoor air pollution (WHO, 

2016). The main culprits are ozone (O3), nitrogen dioxide (NOx) and, most crucially, fine 

particles or particulate matter (PM) with a diameter of 10 micrometres or less (PM10).  

In response to the adverse consequences of outdoor air pollution for humans and the 

environment, an extensive body of legislation has been developed, establishing health-based 

standards and objectives for the most harmful atmospheric pollutants.  If set limits are 

exceeded, environmental authorities are required to adopt air quality plans detailing measures 

to keep the exceedance period as short as possible. Consequently, the prediction of exceedances 

of the legal standards has become a critical task for environmental authorities, especially in 

mega-cities, to prevent a wide range of adverse outcomes. Based on the existing air pollution 

monitoring systems, a number of methods have been put to work to provide a way of 

identifying when an environmental system is getting “out-of-control”, and thus enable the 

application of appropriate remedial measures. Most of these attempts have focused on 
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mathematical models (either determinist or statistical, but usually statistical) aiming at one of 

the two following objectives: (i) The short-term prediction of the concentrations of a number of 

air pollutants especially harmful for human health (most of the literature); (ii) Predicting the 

violation of the legal limits established for such pollutants (here, the literature is much scarcer).  

This paper is part of the current literature that focuses on the early warning of the violation 

of the legal limits established for the most harmful air pollutants, instead of on the short-term 

prediction of the value of their concentrations, and given the limitations above-mentioned of the 

deterministic approach, our methodological proposal is based on statistical methods. 

We export the financial rudiments associated with risk measurement to the air pollution 

control arena. First, we use the financial concept of Value-at-Risk (VaR) to evaluate the risk of 

an environmental system (more specifically, an air pollution system) experiencing an extreme 

relative increase that, depending on the current state of such a system, could lead it to become 

“out-of-control” (to exceed the legal limits). Second, we do not use indirect methods to estimate 

the VaR, as usual in financial literature1. Instead, we use quantile regression (QR) for VaR 

estimation, which is a distribution-free direct method, and avoids the limitations of the indirect 

procedures. Specifically, we use the Conditional Autoregressive Value at Risk (CAViaR) 

approach by Engle and Manganelli (2004). Third, we extend CAViaR with certain observable 

endogenous variables related to meteorological conditions (although predictability is not 

necessarily limited to them) because they have been proved to have valuable predictive power 

to forecast the right tail of the conditional air pollution concentration distribution, which makes 

them useful for risk management in a pollution control framework (some recent examples are 

Ravindra et al., 2019; Feng et al., 2019; Załuska and Gładyszewska-Fiedoruk, 2020; Liu et al., 

2020; Haddad and Vizakos, 2021).  

In non-technical words, our proposal is to provide the citizens and environmental 

authorities of a territory with the probability, p, that the relative upside variation of the next-

day concentrations of an air pollutant (in our case PM10) will equal or exceed a specific extreme 

value (this value is the p%-VaR value). More interestingly, citizens and environmental 

authorities can be provided with a set of p%-VaR values. This information is extremely useful 

for the environmental authorities to adopt the necessary measures to prevent damages for 

human health, fauna, and vegetation, and especially to alert of imminent exceedances of the 

legal limits set by environmental legislation.  

For this purpose, we do not rely on the indirect methods usually employed in the VaR 

forecasting literature. Given the natural methodological link between VaR forecasting and the 

QR approach (VaR is a quantile), we propose a direct method, CAViaR, which considers the 

quantile from a conditional perspective: that is, the quantile is seen as a latent autoregressive 

process that may also depend on exogenous covariates and exhibit nonlinearities in parameters. 

Specifically, in the CAViaR approach the past behaviour of the VaR and the absolute value of 

the returns (in our case pollution “returns”) is transmitted to the response variable via an 

ARMA-type function.  We take advantage of the possibility of considering exogenous 

covariates in the CAViaR specification to include key meteorological variables that have been 

proved to be good predictors for air pollutant concentrations. Given the computational 

 
1 We are referring to the most popular parametric methods (like EWMA or GARCH-type models) nonparametric 

density estimation methods, and semiparametric approaches as Extreme Value Theory and Modelling based 

procedures, among others. 



 

 

challenge of estimating a CAViaR model with several exogenous covariates, we have used a 

meteorological conditions index as the only exogenous covariate. 

As far as we know, this the first time that an extended CAViaR strategy is used in the 

literature of air pollution control, and specifically as a warning mechanism of exceedances of 

the legal limits set for harmful pollutants concentrations (in our case PM10 concentrations) in 

the (very) short term.   

We apply the methodology proposed in the city of Madrid, Spain. Specifically, we use it for 

one-day-ahead VaR forecasting at the 99%-quantile, that is, for the forecasting of the VaR value 

that there is a probability of 1% that it will be equalled or exceeded (or a probability of 99% that 

it will not be equalled or exceeded). For this purpose, we use the daily PM10 registers recorded 

by the air pollution monitoring stations of the city in the period January 2011-December 2019.   

We use a SAV-CAVIaR, as this specification outperforms the others in VaR forecasting:   

( )*

, ,0 ,1 , 1 ,2 1 1 ,tt t t tVaR VaR r f X e        − − −+ += + + ,    (7) 

with 
tX  being a predictive time t variable, other than returns and f (·) a function of 

tX -

variables.  

In the SAV-CAVIaR model the lagged returns are considered in absolute value. The reason 

behind this decision is that the VaR is expected to increase as 
1tr−
becomes very negative, 

because one bad day makes the probability of the next somewhat greater. However, it might be 

that very good days also increase VaR, as would be the case for volatility models. Hence, VaR 

could depend symmetrically on 1tr − .  

The functional form of model (7) attempts to parsimoniously exploit the additional 

information conveyed by both the past of the conditional quantile and
tX . In other words, the 

main purpose of the autoregressive structure is to ensure that the dynamics of the conditional 

quantile change smoothly over time. Since VaR dynamics are highly persistent, the lag of the 

VaR process could also be seen as an instrumental variable that proxies the true latent process. 

Similarly, 1tr −   is a natural proxy for the unobservable volatility of returns. Since it introduces a 

source of (stochastic) short-term variation related to the arrival of news in the pollution market, 

this process is expected to be a major driver in any market risk measure. At this point, the 

similarities between the basic structure of the CAViaR model under the restriction and the class 

of GARCH models widely used to characterize volatility are fully evident. The existing 

literature in the finance framework has not yet discussed which variables should be included in 

such an analysis.2 The central strategy we adopt consists of individually analysing the principal 

components of a number of key meteorological variables which are accepted as being related to 

the PM10 concentration level.  In this article, framed in the area of air pollution control, we use 

as additional variables typical meteorological variables that have been proved to be highly 

related to the level of PM10 concentrations; their dynamics have been captured by a principal 

components indicator of such meteorological conditions (see more details in data section). It is 

of note that, although the results in a parametric modelling might be sensitive to the choice of 

the proxy selected to capture the dynamics of meteorological conditions, a robust picture is 

expected to emerge for a wide range of proxy variables.  

The reason behind MCI is that the non-linear estimation of the SAV-CAViaR model 

extended with more than one X-variables is a computational challenge, quite time demanding 

and highly unstable for extreme quantiles, which are the ones we are interested in. In addition, 

the high correlation among meteorological variables could lead to multicollinearity problems. 

 
2There is scarce literature on this matter. Rubia and Sanchis-Marco (2013) analyze the stock market forecasting ability of 

liquidity and trading activity variables using different SAV-CAViaR models extended with one microstructure 

covariate selected from the most relevant ones.  



 

 

The model resulting from extending the basic SAV-CAViaR specification with the lags of a 

single predictor can be seen as a low-order individual autoregressive distributed lag model for 

the conditional quantile. We name this model the extended SAV-CAViaR model. Table 1 shows 

the backtesting results for the extended Caviar model and four competing alternatives for the 

monitoring stations operating in the city of Madrid. These competing alternatives include the 

traditional CAViaR specification as well as the EWMA model (RiskMetrics), the Gaussian 

GARCH(1,1) model, and a model that combines GARCH estimation with the block-maxima 

approach of the EVT&M. 

 

Table 1 

Backtesting results for PM10 returns: Extended CAViaR model vs. competing models 

 

Cuatro Caminos 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.4% 0.9257(0.3450) 0.2760(0.5993) 1.2017(0.5506) 1.4680(0.9616) 31.0420(0.0000) 

GARCH 1% 2.1% 2.3530(0.1250) 0.3922(0.5311) 2.7452(0.2377) 2.2807(0.8922) 30.6789(0.0000) 

EVT&M-BM 1% 1.4% 0.3530(0.4904) 0.0722(0.6711) 0.4252(0.6094) 1.8887(0.9322) 18.0499(0.0000) 

CAVIaR  1% 1.3% 0.2169(0.6414) 0.0647(0.7993) 0.2816(0.8653) 1.0989(0.9815) 10.6789(0.0048) 

Extended CAVIaR  1% 0.9% 0.2031(0.6615) 0.0363(0.8489) 0.2394(0.8704) 1.1569(0.9890) 4.1702(0.1243) 

Escuelas Aguirre 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.6% 0.6632(0.3315) 0.3082(0.5788) 0.9714(0.6153) 2.7371(0.8411) 29.0430(0.0000) 

GARCH 1% 2.5% 0.7213(0.4305) 0.2642(0.6218) 0.9855(0.6535) 2.3608(0.8837) 31.5429(0.0000) 

EVT&M-BM 1% 1.4% 0.2510(0.5924) 0.1722(0.5751) 0.4232(0.7991) 2.8987(0.9010) 16.4221(0.0008) 

CAVIaR  1% 1.3% 0.2596(0.6414) 0.0447(0.6993) 0.3043(0.8504) 2.2125(0.8992) 11.4073(0.0033) 

Extended CAVIaR  1% 0.9% 0.2169(0.6414) 0.0647(0.7993) 0.2816(0.8704) 0.3476(0.9992) 14.8308(0.0860) 

Mendez Álvaro 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.8% 0.7187(0.3966) 0.3278(0.5670) 0.9260(0.6294) 2.4446(0.8631) 26.0461(0.0000) 

GARCH 1% 2.4% 0.1899(0.6630) 0.3841(0.5575) 0.5740(0.8437) 2.7788(0.8526) 24.6488(0.0000) 

EVT&-BM 1% 1.8% 0.3528(0.5712) 0.1277(0.6115) 0.4805(0.6511) 1.8997(0.9190) 19.0529(0.0000) 

CAVIaR  1% 1.3% 1.5383(0.2149) 0.2607(0.6096) 1.8112(0.4043) 1.4219(0.9243) 12.7340(0.0017) 

Extended CAVIaR  1% 0.8% 0.0000(1.0000) 0.1012(0.7504) 0.1012(0.9506) 1.9002(0.9286) 1.6631(0.4354) 

Paseo de la Castellana 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 1.9% 0.9890(0.3092) 0.2760(0.5993) 1.2650(0.4806) 0.6555(0.9954) 11.9220(0.0024) 

GARCH 1% 1.8% 2.6126(0.1060) 0.4321(0.5109) 3.0447(0.1077) 12.6878(0.0483) 11.0413(0.0092) 

EVT&M-BM 1% 1.6% 0.3550(0.5224) 0.1789(0.5915) 0.5339(0.8001) 2.9897(0.8620) 10.6619(0.0085) 

CAVIaR  1% 1.2% 1.3948(0.3289) 0.1012(0.7504) 1.4960(0.3906) 2.2153(0.8989) 1.9795(0.3717) 

Extended CAVIaR  1% 0.9% 0.7187(0.3966) 0.1992(0.6553) 0.9260(0.7694) 2.2001(0.9059) 1.2847(0.5261) 

Plaza Castilla 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.1% 0.9431(0.3315) 0.3082(0.5788) 1.2513(0.5153) 1.1875(0.9775) 16.398(0.0000) 

GARCH 1% 1.9% 0.8814(0.2114) 0.2275(0.5983) 1.1089(0.6704) 0.9131(0.9887) 10.987(0.0012) 

EVT&M-BM 1% 1.7% 0.4550(0.4914) 0.1252(0.6514) 0.5802(0.8311) 1.9897(0.8990) 9.0929(0.0010) 

CAVIaR  1% 1.3% 0.3890(0.5015) 0.0363(0.8489) 0.9714(0.7153) 1.2185(0.9760) 8.0982(0.0174) 

Extended CAVIaR  1% 0.8% 0.1530(0.6540) 0.0161(0.8990) 0.1998(0.9682) 0.9087(0.9893) 4.6034(0.1001) 

Moratalaz 



 

 

VaR Model Λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.5% 0.9349(0.3248) 0.276(0.5993) 1.2012(0.5506) 1.8739(0.9309) 20.2441(0.0000) 

GARCH 1% 2.3% 1.3490(0.1983) 0.376(0.4993) 1.7250(0.7406) 1.4968(0.9428) 21.0426 0.0000) 

EVT&M-BM 1% 2.1% 0.4102(0.5264) 0.2989(0.5404) 0.7091(0.8111) 1.9897(0.8990) 17.9929(0.0000) 

CAVIaR  1% 1.3% 1.5383(0.2149) 0.2607(0.6096) 1.7990(0.7243) 2.9355(0.8169) 13.5398(0.0011) 

Extended CAVIaR  1% 0.7% 0.2169(0.6414) 0.0647(0.7993) 0.2816(0.9590) 1.6468(0.9492) 6.8176(0.0445) 

 

Cont. Table 1 

Backtesting results for PM10 returns: Extended CAViaR model vs. competing models. 

 

Vallecas 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 1.6% 0.9239(0.3340) 0.276(0.5993) 1.1999(0.5606) 5.1803(0.5209) 10.0461(0.0099) 

GARCH 1%   1.5% 0.2169(0.6414) 0.2775(0.5983) 0.4944(0.6704) 1.308(0.9145) 9.0491(0.0121) 

EVT&M-BM 1% 1.4% 0.3901(0.5378) 0.2799(0.5624) 0.6700(0.7111) 1.9697(0.9091) 8.0529(0.0208) 

CAVIaR  1% 1.2% 0.1899(0.6630) 0.1461(0.7023) 0.6060(0.7427) 2.2065(0.8998) 1.4028(0.4959) 

Extended CAVIaR  1% 0.9% 0.1499(0.6830) 0.1061(0.7323) 0.2560(0.9627) 1.8548(0.9326) 1.3330(0.5134) 

Sanchinarro 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.3% 0.8169(0.2414) 0.2775(0.5983) 1.0944(0.6004) 1.1751(0.9781) 30.0707(0.0000) 

GARCH 1%   2.4% 0.7187(0.3966) 0.3278(0.5670) 1.0465(0.6294) 13.0398(0.0424) 29.0739(0.0000) 

EVT&M-BM 1% 1.9% 0.4511(0.5018) 0.3010(0.5324) 0.7521(0.6511) 2.0997(0.8651) 27.9529(0.0000) 

CAVIaR  1% 1.6% 0.5383(0.5149) 0.2607(0.6096) 0.7990(0.6043) 1.9797(0.8867) 20.6081(0.0000) 

Extended CAVIaR  1% 0.7% 0.4187(0.5996) 0.1992(0.6553) 0.6179(0.7800) 1.0931(0.9815) 7.0280(0.0298) 

Tres Olivos 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.4% 0.2169(0.6514) 0.2675(0.6043) 0.4844(0.5704) 1.3051(0.9581) 32.0707(0.0000) 

GARCH 1%   2.2% 0.7249(0.3890) 0.2760(0.5993) 1.0009(0.7006) 1.4599(0.9083) 25.0739(0.0000) 

EVT&M-BM 1% 1.7% 0.4411(0.5198) 0.2910(0.5414) 0.7321(0.6711) 2.0187(0.8821) 23.9529(0.0000) 

CAVIaR  1% 1.3% 1.5383(0.2149) 0.2607(0.6096) 1.7990(0.4043) 2.1016(0.8797) 13.0988(0.0014) 

Extended CAVIaR  1% 0.7% 0.7187(0.3966) 0.1992(0.6553) 0.9179(0.7229) 1.2339(0.9695) 12.1087(0.0596) 

Urb. Emb. Barajas 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.9% 0.7187(0.3966) 0.3278(0.5670) 1.0465(0.6294) 8.8440(0.1825) 98.2092(0.0000) 

GARCH 1% 2.8% 0.2169(0.6414) 0.2169(0.5983) 0.4338(0.6470) 0.4501(0.9884) 97.2020(0.0000) 

EVT&M-BM 1% 1.7% 0.5411(0.4218) 0.3710(0.5012) 0.9121(0.7311) 2.9027(0.8712) 95.9393(0.0000) 

CAVIaR  1% 1.4% 0.7187(0.3966) 0.1992(0.6553) 0.9179(0.7229) 2.0755(0.8894) 89.0205(0.0000) 

Extended CAVIaR  1% 0.8% 0.1894(0.6540) 0.4091(0.5224) 0.5985(0.8390) 0.4153(0.9887) 6.0305(0.0490) 

Casa de Campo 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1%   2.8% 0.9431(0.3315) 0.3082(0.5788) 1.2513(0.6153) 0.8606(0.9903) 26.7134(0.0000) 

GARCH 1%   2.7% 0.2169(0.6514) 0.2775(0.5983) 0.4944(0.6704) 1.0894(0.9820) 25.6403(0.0000) 

EVT&M-BM 1% 2.3% 0.5611(0.4008) 0.3910(0.4891) 0.9521(0.7010) 2.9927(0.8612) 24.6910(0.0000) 

CAVIaR  1% 1.6% 2.6126(0.1060) 0.3307(0.5653) 2.9433(0.2277) 3.1681(0.7256) 19.0881(0.0000) 

Extended CAVIaR  1% 0.8% 0.1891(0.6699) 0.2661(0.6013) 0.4551(0.8793) 1.0430(0.9857) 6.2392(0.0442) 

Farolillo 

VaR Model λ Exc (%) LRUC LRIND LRCC DQ VQR 

EWMA 1% 2.6% 1.8112(0.4043) 0.3742(0.5407) 2.1854(0.2843) 12.1087(0.0596) 23.0304(0.0000) 

GARCH 1% 2.5% 0.3849(0.6479) 0.2460(0.5293) 0.6309(0.7606) 2.2867(0.8915) 22.1087(0.0000) 

EVT&M-BM 1% 1.8% 0.5911(0.37808) 0.4310(0.4592) 1.0221(0.5710) 3.0127(0.8212) 18.0910(0.0000) 

CAVIaR  1% 1.4% 3.9136(0.0479) 1.7512(0.1857) 5.6648(0.0583) 3.7087(0.7025) 11.6144(0.0030) 



 

 

Extended CAVIaR  1% 0.8% 0.3671(0.6589) 0.2024(0.5510) 0.5695(0.8500)  2.1061 (0.9194) 6.5789(0.0373) 

*The column Exc. shows the estimated frequency of empirical exceptions, while the columns LRUC, LRIND, LRCC, DQ 

and VQR show the values of the test statistics for the respective tests (p-values in parentheses). 

The out-of-sample (as well the in-sample) results for the estimation and forecasting of the 

one-day-ahead VaR at the 99%-quantile, in the sites where the twelve PM10 monitoring stations 

are operating in the city of Madrid, indicate that the extension of the standard CAViaR model 

with the abovementioned meteorological index notably improve the accuracy of the forecasts. 

In addition, our extended CAViaR proposal clearly outperforms traditional CAViaR and other 

competing popular parametric and semi-parametric forecasting alternatives not only in finance 

but also in a large number of disciplines (including air pollution). Importantly, the heavier the 

traffic in the urban area, the more the extended CAViaR strategy outperforms the alternatives.  

Therefore, we contribute a high-performance strategy to the literature on air pollution 

control—a strategy that has yielded very good results in finance and that has been exported to 

the air pollution control arena, extended with a meteorological index which captures the impact 

of the meteorological conditions, which in turn have been proved to be relevant drivers of air 

pollutant concentrations. This is an important finding of undoubted relevance for municipal 

forecasting teams, municipal authorities, and policy makers in charge of environmental issues.   
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