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Abstract: 
 
A general purpose of the analysis of spatial data is the detection of cross-sectional 
dependencies in a given series, as a previous step to model the data. These mechanisms 
may combine different elements such as autoregressive or moving average structures 
among the most popular. In any case, we should test for the assumption of randomness 
using some of the tests proposed in the spatial econometrics toolbox. Especially 
outstanding among these is the Moran I test (Moran, 1950) whose characteristics 
(simplicity, efficiency) gave it a prominent role in applied literature. However, this test 
has also some weaknesses such its sensitivity to the scale of the data, which affects the 
power of the test, and its (unknown) distribution in a situation of small sample sizes. 
 In this paper we present evidence in relation to the first question and a new test 
of spatial autocorrelation, called IGQ (in reference to the Goldfeld-Quandt test variant), 
whose distribution function is known for all sample sizes, it is not affected by scale 
factor problems of the data and appears to have better properties than the Moran’s I, 
especially for the case of small sample sizes. 
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1.- Introduction 

In 1950 Moran introduced one of the most popular statistics in the analysis of 

spatial data, the Moran's I test, which addresses a simple question: are there cross-

sectional dependencies in the data? The original framework of Moran was a single 

cross-section, where the connections were coded by a simple binary scheme. Since then, 

the situation has evolved quite a lot. For example, the weighting matrix can be 

symmetric or non-symmetric, and be based in any measure of distance. The test has 

been extended to panel data sets (Elhorst, 2010), to spatio-temporal dependencies 

(Lopez et al, 2011), and also to simultaneous (Kelejian and Prucha, 2001) and SUR 

(López et al., 2019) systems. The distribution of the statistic has been the subject of 

frequent research, with good results for the asymptotic case including several 

suggestions for finite sample sizes (Tiefelsdorf and Boots, 1995, Tiefelsdorf, 2000). In 

case of no normality, the randomization approach constitutes an elegant and efficient 

way to solve the inference (Cliff and Ord, 1981). Moreover, the available evidence 

points to Moran's I being one of the most efficient test to detect cross-sectiona 

dependencies (Anselin and Florax, 1995). Indeed, this is a very intuitive statistic, with a 

well-defined range of values, easy to obtain and useful for the user. In the end, it has 

laid aside other contemporary tests, such as Dacey’s d (Dacey, 1965) or Geary’s c 

(Geary, 1954), and remains competitive with other tests appeared later in the literature, 

such as the Lagrange Multipliers. It is not surprising that the Moran's I has almost 2 

millions of items in Google. 

The purpose of this paper is to contribute to the Moran’s I literature by 

highlighting some weaknesses that is worth to consider in applied work. In particular, 

we point to two issues which are (i) the problems of the Moran's I in situations of small 

samples (wrong size, low power) and (ii) the impact of the scale of the data on the 

behavior of the test. The last point is not very well known by practitioners but we are 

going to show that, under some circumstances, the power of the test is zero when this 

scale increases. 

In the following section we present some basic results related to the test, while 

the third discusses the issues related to the sample size and the scale. In the fourth 

section we present some alternatives to deal with these difficulties, which are tested in 
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the simulation solved in the Fifth section. The work finishes with the Sixth section 

dedicated to main findings and conclusions. 

2. – Brief presentation of the Moran's I 

The Moran statistics can be seen as an approximation to the coefficient of 

correlation between the original series, y, and its spatial lag, Wy, obtained using the so-

called weighting matrix, W. It is expression has become popular: 
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 the demeaning matrix (De Jong et al, 1984);  is a 

(nxl) vector of ones and I is the identity matrix of order n. 

The moments of the Moran's I, even under the assumption of independence, are 

not immediate to obtain as can be seen in Moran (1950). The discussion simplifies if it 

is possible to assume normality; if this is not the case, Cliff and Ord (1981) suggest a 

randomization approach which is very effective. Moreover, Cliff and Ord (1972) show 

that the asymptotic distribution of the test approaches normality as the sample size 

increases. The conditions that support this approximation are relatively weak, as can be 

seen in Sen (1976). Its distribution is unknown for small samples, although Sen (1990) 

and Tiefelsdorf and Boots (1995), develop procedures to obtain the exact distribution 

function using numerical integration methods. Furthermore, King (1981) demonstrates 

that the statistic of Moran is a Locally Best Invariant (LBI) test in the neighborhood of 

the null hypothesis and, under certain conditions, also a Uniformly Most Powerful 

Invariant (UMPI) test. Burridge (1980) obtains its formal equivalence with the 

Lagrange Multipliers (LM), while Anselin and Rey (1991) and Anselin and Florax 

(1995) demonstrate, using Monte Carlo methods, its good performance and superiority 

as a test of spatial autocorrelation in relation to other competitors. These results confer 

the Moran's I test a central position in the field of spatial analysis. 
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There are also flaws and weaknesses that affects the Moran's I such as, for 

example, that the alternative hypothesis, in case of rejecting the null of no correlation, 

remains unspecific. Moreover, it is a conditional test in the sense that the conclusion is 

restricted to the W matrix used in the analysis. Finally, we need to assume that, under 

the hypothesis of independence, the first and second order moments of the variable are 

constant across space. As will be clear below, this point is the nexus between the issues 

of autocorrelation and spatial heterogeneity, and one of the causes of false rejections of 

the null hypothesis when using the Moran's I. 

3. – The scale factor and the sample size issues 

As indicated, one of the limitations with the Moran's I is the lack of a well-

defined alternative hypothesis. In case of rejecting the null hypothesis, it is frequent to 

specify a spatial autoregressive process, SAR, for the series. However, there are other 

options such as spatial moving average, SMA, or a spatial error component, SEC 

(Kelejian and Robinson, 1993). The first involves a structure of global dependencies 

which is of local nature for the other two. Furthermore, a SAR process means, in 

general, that the first and second order moments of the variable changes for each point 

in space which results in heterogeneity, a property shared by most spatial series. A 

typical SMA or SEC series will show up more regularity across space, with a constant 

first order moment. 

These observations have an impact in the Moran's I through the sample mean 

because this is an unbiased and consistent estimator only for the SMA and SEC cases: 
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with B=I-W. As said, the first order moment for the SAR case, assuming that μ 

≠ 0, changes from point to point: 

    1 1y Wy u y u E yB B               (2) 
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The sampling mean is centered on the mean of these expected values, 

 
1'BE y

n

 
  , but it is a statistic lacking any meaning1. The same as with SMA case 
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The use of the sampling mean in the Moran’s I is justified in order to remove a 

common factor in the data, which is only present in SMA or SEC processes. Thus the 

question is the incidence in the behavior of the test. To simplify, let us assume that the 

W matrix is symmetric. We can write for the SMA, ISMA, and SAR, ISAR, cases that: 
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The factor of scale disappears from the SMA case, SMA
0

n u 'BDWDBu
I

u 'BDBuS
 , 

which becomes a quotient of two quadratic forms of n normal N(0,1) variates, u  , on 

two symmetric but singular matrices where    rg BDWDB Min n 1, rg(W)   and 

 rg BDB n 1  . 

 

 The distribution of both quadratic forms will pertain to the chi-squared family, 

although they will not be independent. Using the results of Yule and Kendall (1950), we 

can approximate their expected value though: 

 Assume that the weighting matrix is symmetric, then the statistic in (3.3) is a 

quotient of two quadratic forms of a vector of N(0, 2) variates on two symmetric and 

singular matrices. The two quadratic forms are not independent but we can use the 

result of Yule and Kendall (1950) to approach the expected value of the quotient 
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where o(-) means "of smaller order than". Solving the above expression, the 

expected value of Moran's I is: 
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which can be approximated by: 
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with r. the r-th characteristic root of W. For positive values of the parameter , 

the expected value of I will be negative and positive for negative values of the former. 

The two quotients that appear in the square brackets are positive and less than one 

(using the Cauchy-Swartz inequality). Their contribution will become less significant as 

the sample size increases, so that the above expression can be reduced, for large sample 

sizes, to: 
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 (3.7) 

Independently of the accuracy of these approximations, the relevant aspect of all 

of them is that at no moment is the distribution of Moran's I affected by the scale of the 

process, being efficiently neutralized by the sampling mean. 

The above result allows us to present graphs such as that of Figure 3.1. With the 

continuous line we represent the expected value of Moran's 1 according to (3.7) and 

with the dotted lines the acceptance limits of the null hypothesis of independence at a 

significance level of 5% (that is 1.96xDT (I), where DT(I) is the standard deviation 

under the null hypothesis). The reference matrix, of the order (74x74), corresponds to 

the NUTS Il European regional system of 12 member states. The stability interval (if by 

such we understand that in which it is true that r 1; r   associated with this matrix is 

(-0.31, 0.17). 
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Figure 3.1: Expected value of Moran's I for SMA processes. 

 

 

The situation in the SAR case is different, given that, as we mentioned before, 

the first order moment of the series is not constant, which means that the sampling mean 

will be a biased estimator of the scale factor. Taking (3.2) as a point of reference, it 

follows that: 
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In this type of process, Moran's I can be developed as: 
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Using the approximation of (3.4) again, its expected value can be expressed as: 
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with c=\2 the coefficient of variation of the process. The above result is 

intractable, although the probability limit of (3.9) can be considered as an 

approximation: 

 

1 1 2 1 1
0 0 1R R 2

1 1 2 1 1 1 2
R R

lim trB DWDB c lim 'B DWDBS S 2n c np lim I
2dlim trB DB R c lim 'B DB R c d

   

 
   

 

         
         

  (3.11) 

The terms d1 and d2 are positive for any , while n1 and n2 will be negative for  

<0 and positive if the opposite is true. Given that c2 will al so be positive, the presence 

of a factor of scale in the DGP of the series will not affect the sign of the test. However, 

as the scale increases the I statistic will tend towards the quotient (n2/d2), terms strictly 

associated with the scale (and with the error in the estimation of the first order moment). 

This situation can be represented on a graph as it appears in Figure 3.2. The 

continuous line represents the quotient (n2/d2) obtained for the same contiguity matrix 

used in Figure 3.1. This is the limit of Moran’s I when we increase the factor of scale of 

the series indefinitely. The dotted lines represent the acceptance limits of the null 

hypothesis of independence at a significance level of 5%. 
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Figure 3.2: Limit of the expected value of Moran's 1 for SAR processes. 

 

 

Figures 3.1 and 3.2 are apparently similar, though in the first we are representing 

an expected value around which the finally observed value of the I statistic will 

fluctuate (SMA case), while in the second we represent the convergence limit of the 

same statistic (SAR case). That is to say that, in the first case, Moran's I will have a 

certain capacity to detect relationships of spatial autocorrelation even when the 

coefficient of the process is close to zero, while in the second there is a zone of values 

in which the test will not have any power at all (if the scale is high). 
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Figure 3.3: Estimated power function of Moran's I. SMA case. 

 

 

In Figures 3.3 and 3.4 we reproduce the results of a small simulation (100 

replications in each experiment) carried out to confirm this effect. The contiguity matrix 

used is the same (that corresponding to the European regional system of 12 member 

states, binary and of the order 74x74). Random series have been obtained from an 

N(0,1) distribution, and then transformed in SMA or SAR processes with a factor of 

scale ranging between 0 and 1000. In the graphs the percentage of rejections of the null 

hypothesis of no correlation is reflected, obtained in each case using Moran's test. 

These graphs tend to corroborate previous comments. Moran's I does not show 

any special sensitivity to the factor of scale when it is applied to SMA processes, while 

its impact is evident in SAR structures. In this case, and when the scale of the series is 

1000, the power of the test is zero for values of the coefficient of autocorrelation 

between -0.08 and 0.07. ln the rest of the parametric space the power is one. 
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Figure 3.4: Estimated power function of Moran's I. SAR case. 

 

 

4. – Some Proposals 

The problem noted in the previous section affects a restricted zone of the 

parametric space (dependent on the contiguity matrix) and occurs only when the series 

is of SAR type. It is not a critical problem but does create certain inconveniences. Some 

solutions appear obvious, such as using a logarithmic transformation on the series 

before resolving the test. In this paper we present another proposal that may be useful 

when the sample size is not very large, given that it implies using the eigenvectors and 

eigenvalues of the contiguity matrix W. 

If the series is a SAR, its DGP is given by: 

      1 1y Wy u y u uI W B
              (4.1) 

where  is a vector of ones of (Rx1) order,  the factor of scale,  the parameter 

of autocorrelation and u a white noise vector N(0,2I). If it is a SMA, the associated 

DGP will be: 

  y I W u Bu         (4.2) 

ln both cases, the series y and u are referenced to the canonical base (e), 

although we can also use other bases such as that composed by the eigenvectors of B 
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(q), coincident with those of W and independent of the parameters of the process. If we 

order these vectors in the columns of matrix Q, the mapping matrix from one base to the 

other will be Q' which, applied to (4.2) allows us to write: 

   * * * * *Q ' y Q ' Q 'Q I Q 'u y q u q v               (4.3) 

where y*=Q'y and u*=Q'u are the co-ordinates of the original vectors y and u in 

the new base q and q*=Q'l.  is the matrix of characteristic roots of  which depends on 

the corresponding matrix of roots of W (). The transformed noise vector maintains the 

characteristics of the original: u* ~ N(0,2I). Given that it is not observable, its 

incidence is resumed in the random term v*, different to the previous one in that it is 

heteroskedastic: v* ~ N(0,22). 

      1 * * * **1 1Q ' y Q 'Q Q' Q 'u y q q wI u
                (4.4) 

If we resolve a similar transformation in the SAR process of (4.1) we obtain: 

 * **Q ' y Q ' Q 'u y uq         (4.5) 

With w =-1u*~ N(0,2-2). Lastly, when the series is composed of a factor of 

scale and a white noise without spatial structure (=0), the filter above leads to: 

The last three equations (4.3), (4.4) and (4.5) allow us to design a strategy of 

analysis of spatial series based on the following considerations: 

(i)- Given that the matrix of eigenvectors Q is not singular and known (it is 

directly associated with W), the filtering of the original series should not have any effect 

on the quality or the quantity of information contained in the sample. 

(ii)- If a factor of scale intervenes in the DGP of the original series, a term 

q*=Q'l should appear in the DGP of the filtered series. 

(iii)- When there exists some spatial structure (of SAR or SMA type) in the DGP 

of the original series, the error term linked to the filtered series will be heteroskedastic. 

Also, the heteroskedastic function will respond exclusively to the series of eigenvalues 

of the contiguity matrix. 

(iv)- The systematic part of the equation that describes the DGP of the filtered 

series will be linear in the variable q* (proportional in accordance with 4.3) in the SMA 

case, and non-linear in the SAR case (equation 4.4). 

This strategy can be made operative using, as a testing equation: 

 * * *y q n      (4.6) 
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in which it will be true that =0, = and n*=u*·when the original series is a 

white noise. If the DGP is of SMA type, it wi11 be verified that =0, = and n*=v*. 

Lastly, when the DGP is of SAR type, the expansion of (4.4) leads to: 

    2 2* * * * *y q q q w                 (4.7) 

so that, in (4.6), =0, = and   j j** *
j 1qw v 
     . The LS estimation of 

(4.6) will produce unbiased and consistent estimators of  and  when the DGP is of the 

first or second type (white noise with scale or SMA), but they will be biased and 

inconsistent in the SAR case. This bias can be corrected, at least partially, using a 

testing equation such as: 

 * * * * *
1 2 p1 2 py q q q w           (4.8) 

with qj* = jq*; j = 0, 1, ... , p . For a sufficiently high value of p we can expect 

that the impact of the specification error (which will still exist in the SAR case) on the 

LS estimation will be moderate. In any case, the relevant aspect is that if 

heteroscedasticity is detected in the error term of (4.8), associated explicitly with the 

structure of the contiguity matrix, this will be an unequivocal sign of spatial 

autocorrelation in the original series. 

Among the various possibilities that exist, the Goldfeld-Quandt test appears to 

bring together the principal requirements: 

 lt is easy to obtain. 

 Its distribution is known for all samp1e sizes. 

 Spatial structure can be introduced explicitly in the test process. 

In respect to the latter, it must be taken into account that in the disturbance of the 

SMA process of (4.2) it will be true that: 

    
*
r2* 2 2

r r
r

V w 0 0
V 1 2 1 rv r 0 0

                         
  (4.9) 

while in SAR type processes: 

 
   

*2 2r*
r 2 3

r

V w 0 02V rw
0 01 1r r

                    
  (4.10) 

In both cases, for a concrete value of 8, the variance evolves systematically with 

r. This is all the information that we need for resolving the Goldfeld-Quandt test. The 
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values of y* will be ordered highest to lowest (or lowest to highest) with ; the central c 

observations will be excluded (our experience corroborates the normal practice of 

excluding a third of the sample); the equation (4.8) will be estimated by LS in the first 

and last subsamples and the test statistic will be obtained as (more details in the 

Appendix): 

 MAX R c R c
k; k

2 2MIN

SRGQ F
SR

    
 

    (4.11) 

where SRMAX and SRMIN are the highest and lowest residual sums respectively 

and k=p+l. 

In the context in which we have set the discussion, another attractive alternative 

is the Breusch-Pagan (BP) LM test. In this case, the concrete functional form associated 

with the heteroskedastic variance is unknown (it could be 4.9 or 4.1 0), although its 

arguments are identified (the eigenvalues of the contiguity matrix W). Other 

possibilities (the tests of Szroeter, 1978 and White, 1982) have been considered but 

without much success. 

One result derived from the above discussion is that, if heteroskedastic 

relationships have been detected in the filtered series, this information can be used to try 

to identify the DGP of the series. In accordance with (4.3), if the series is of SMA type, 

the existence of a scale different to zero in the DGP will result in  ≠0. Also, if the 

variance of the error term n* responds to the sequence of values {r, r=l, 2, .... , R}, the 

conclusion is that the original series presents a structure of spatial correlation. On the 

other hand, if the DGP is of SAR type, the equation of reference is (4.4) expanded in 

(4.7). That is to say that what differentiates both types of process is that the 

autoregressive requires a wider structure of regressors (q*, q*, 2q*, .....) than that of 

the moving average (only q*). 

This reasoning can be developed in different ways. In the first place, (4.3) and 

(4.4) are different functional forms, which could give rise to a model selection strategy 

based on examining the suitability of each functional form or on some other more 

specific criterion. Another possibility could be to use (4.8) as a nesting equation of both 

processes to contrast the restrictions that lead to an SMA structure (2=3= … = p=0) 

and to an SAR structure (which will be non-linear). Another less rigorous option, 

although of simpler resolution, could be to accept an SMA structure initially when signs 

of autocorrelation have been found. The adoption of SAR structures instead of SMA 
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ones would be carried out only when there is strong evidence in their favor. This 

strategy could be carried out by means of a simple testing equation: 

 * * * *
1 21 2y q q w        (4.12) 

estimated by LS. The acceptance of 2=0 implies the adoption of an SMA 

structure while its rejection leads to the adoption of an SAR structure. The test statistic 

could be the t-ratio associated with this parameter with the peculiarity that, given that 

the error term of that equation is heteroskedastic, a consistent estimation of the 

covariance matrix of the LS estimators must be used. In this sense, the proposal of 

White (1982) is very useful because it generates consistent estimations of the matrix 

even under certain misspecifications in the model (White, 1980), among which we can 

include errors in the functional form as in the case of (4.12) in relation to the SAR 

structure presented in (4.4). 

5. – A small simulation 

In the third section we have commented that Moran's I is sensitive to the scale of 

the series when this has been generated by an SAR type process. This limitation 

becomes a problem when it occurs in zones of the parametric space in which the test has 

zero power. In the fourth section some solutions have been put forward: taking 

logarithms on the series before obtaining the autocorrelation test or resorting to one of 

the heteroskedasticity tests on the filtered series. The usefulness of these proposals will 

be checked below by means of a small Monte Carlo exercise whose most relevant 

characteristics are the following: 

- For the moment we have replicated just one sample size (R=74). 

- We have used only one contiguity matrix of binary type and of order (74x74) 

corresponding to the system of European regions (NUTS II level) of 12 member 

states. 

- Series of random numbers of order (7 4 x 1) have been obtained from a N(0,1) 

distribution, which have later been transformed in SAR or SMA processes using 

(4.1) or (4.2). In each case 100 replications have been resolved. 

- Different factors of scale have been used in order to analyze their impact on each 

test. The replicated values where t=0, 1, 10, l00 and 1000. 

- The stability interval associated with the contiguity matrix is (-0.31, 0.17). 

The most relevant results appear in Figures 5.1 to 5.6 in terms of the percentage 

of rejections of the null hypothesis of independence. Figures 5.1 and 5.2 refer to the GQ 
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test. In the first an SMA has been used as the DGP and in the second an SAR. Figures 

5.3 and 5.4 show the performance of the BP test, In the last two figures, 5.5 and 5.6, 

Moran's I has been used on the logarithms of the original series (to guarantee their 

existence only scales 10, 100 and 1000 have been replicated. 

The testing equation used both for GQ and for BP has been 4.8, fixing p as 3. 

This value seems to maintain a certain equilibrium between the over-specification that 

exists when the series has been generated by an SMA (which results in a loss of power 

of the tests) and the sub-specification characteristic of the SAR case (of which the result 

is estimated power curves that seem anomalous). Lastly, the heteroskedastic hypothesis 

of the BP test has been specified using r, r
2; and r

3; as regressors, with the aim of 

buffering the effects of the error in functional form that exists in the SAR case. 

The results collected in these figures allow us to highlight some provisional 

conclusions: 

As was foreseeable, there is no scale effect either in the GQ test or in the BP test 

when they have been applied to SMA series. However, signs are still appreciable in the 

SAR case, more clearly with the BP test. Their incidence can be diluted by increasing 

the order of p in the testing equation (4.8), at the cost of a progressive worsening of the 

power of both tests. 

The GQ test tends to overestimate the size of the test while BP tends to 

underestimate it. In the first case, the percentage of rejections observed for a zero value 

of the parameter of autocorrelation is systematically above 5%, in a range comprised 

between 6% and 10%. The size estimated in the BP test is closer to the theoretical 

significance level of 5%, although with a tendency to fluctuate between 3% and 4%. We 

believe this is due to a lack of precision in obtaining the eigenvectors of the contiguity 

matrix. 

The estimated power for the GQ test is clearly superior to that of the BP test in 

all cases. 

The logarithmic transformation of the series does not prevent the scale effect 

characteristic of Moran's I in SAR processes. The appearance of Figures 5.6 and 3.4 is 

similar (the same is true for 3.3 and 5.5 in the SMA case), with a slight reduction in the 

range of zero power (now it is -0.06 to 0.06). However, other problems arise such as the 

increase in the size of the test as the scale of the process grows (it is 12% with a scale of 
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1000), or some misleading covariances in the numerator of the test which lead to the 

change of the sign of the sampling Moran's 

Figure 5.1: The Goldfeld-Quandt test. SMA case. 

 

 

 

Figure 5.2: The Goldfeld-Quandt test. SAR case. 
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Figure 5.3: The Breusch-Pagan test. SMA case 
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Figure 5.4: The Breusch-Pagan test. SAR case 

 

Figure 5.5: Moran's 1 test. Logarithmic Transformation. SMA case. 
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Figure 5.6: Moran's 1 test. Logarithmic Transformation. SAR case. 

 

6. - Conclusions 

Moran' s I is an efficient test for detecting relationships of cross-sectional 

dependence in spatial series. However, its behavior is sensitive to the scale of the 

process in series of SAR type. When the coefficient of variation of the series is high, the 

power of the test is zero for a not unimportant range of values of the coefficient of 

autocorrelation. 

In this paper we have noted some solutions and discarded others. Among the 

latter the re-scaling of the series before resolving Moran's I stands out. In the list of 

proposals, the GQ and BP tests offer certain guarantees though the solution doesn't 

seem to be final. It is necessary to elaborate a more structured and consistent analysis 

framework where the impact of scale in SAR processes can be absorbed. It is also 

necessary to extend the cases analyzed in order to contemplate different types of scales 

and of samples sizes. Lastly, another aspect to consider is what happens, with regard to 

the same question of the factor of scale, with the set of LM tests used in the 

specification of the spatial dynamics in a causal econometric model. 
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Appendix: Heteroskedasticiy and Spatial Autocorrelation 

In contrast to what occurs in a general context, a series with a structure of spatial 

autocorrelation will show features of cross-correlation dependencies and also 

heteroskedasticity. Nevertheless, until now, the analysis has been focussed on the first 

aspect (Moran’s test checks if the covariance of the series is statiscally null), not using 

the information existing in the variance of the series. This may be due to the fact that it 

is difficult to isolate the skedastic functions although this is possible when we filter the 

series (King, 1983, suggests a similar approach although in a different context). 

Matrix W comes from a decision of the user and its elements are known (ones 

and zeros) so that the spectral decomposition can be obtained: W= QQ’ where Q is the 

matrix of eigenvectors and that of eigenvalues both of order (RxR). If we use the 

matrix Q to filter the series y* = Q’y the result is that we eliminate the structure of 

spatial dependencies highlighting the skedastic dimension. This means in the SAR case 

of (A1): 

       uyu'QIuWI'Qy'QuWIy *1*111  
 (A1) 

with I)N(0,~u 2*  . The covariance matrix of the y* series, even supposing 

spatial correlation, will be diagonal with characteristic elements:   
r1 22

r , with 

r as the r-th eigenvalue of W. If the original series is a moving average the result is:  

       uyu'QIuWI'Qy'QuWIy **   (A2) 

 The covariance matrix will also be diagonal with characteristic elements 

  r1 22
r . In both cases the skedastic variance is a regular function of eigenvalues 

of the matrix W, which is a consequence of the structure of transversal correlation 

(through the same matrix W) which exists in the original series. What we now propose 

is to use this information to develop a test of spatial autocorrelation to exploit the 

skedastic structure of the series. 

 This proposition is possible given that, under the null hypothesis of 

incorrelation, the variance of the series should not answer to the sequence of 

eigenvalues of W (this would be mere coincidence), whilst when there is an SAR or 

SMA structure the answer must be regular. The instrument of analysis could consist of a 

simple test of heteroskedasticity on the filtered y* series, and that of Goldfeld-Quandt 

(GQ) seems to offer the maximum guarantees. For this it is only necessary to order the 



 

22 
 

values of the series in ascending order with the associated roots, eliminate the central m 

to increase its power and obtain the squared sum of the remaining subsamples. If by 

SRMAX and SRMIN we refer respectively to the highest and lowest value of both sums, 

the GQ contrast of spatial autocorrelation is simple: 

 
k)(k;F~

SR

SRGQ
0:H

0:H

MIN

MAX

A

0 







 (A3) 

with k=(R-m)/2. If the null hypothesis is true, the expected value of both sums 

will be k and the GQ statistic will take a value close to one. If there is spatial correlation 

in the original series (), the degrees of freedom of each sum will differ so that: 
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 (A4) 

with 

jr

2
rjk

 and j = MAX, MIN. In this case, the statistic of (A3) will still be 

a centered F but with kMAX and kMIN degrees of freedom in the numerator and 

denominator respectively. If, before obtaining the GQ statistic we center the data of the 

two subsamples (in relation to the respective sample average), the distribution of (A3) 

will be an F(k-1;k-1) under the null.  The degrees of freedom of the 2 of (A4) will be 

kk jj   with 

jr

2
rj k/)(k

 under the alternative hypothesis. In any case, given that the 

elements of the distribution function are known, we can obtain the power function of the 

test: 

  0/qGQPr    (A5) 

where is the significance level and q� their corresponding abscissa, obtained 

from the distribution F(k,k) of the null hypothesis. For example, if the original series is 

an SMA, the probability of (A5) will be: 
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  0/q)k,k(FPr *
MINMAX    (A6) 

 In (A6), the value of q is known once the significance level is fixed and 

kj (j=MAX or MIN) depends on  as is indicated in (A4), which permits the resolution 
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of (A6) and the obtaining of the power function for the GQ statistic of spatial 

autocorrelation. 
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