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2 Methodology and data

2.1 Methodology

MARS is a flexible non-parametric piecewise regression technique introduced by Friedman (1991). This data-

driven technique is specifically useful to identify non-linearities in regression models without previous assump-

tions about the functional form or which are the explanatory variables or the number of them. The main

characteristic of this methodology is that the econometric model considers different regression slopes in distinct

intervals for each predictor. Unlike better known linear regression techniques, MARS does not assume that

coefficients are stable across the entire range of each variable and instead uses splines in order to fit piecewise

continuous functions to model responses. In general, MARS constructs a piecewise linear function for capture

nonlinear relationship with an adaptive manner (Hoang et al., 2017). The principal advantage of this method-

ology compared with similar algorithms (e.g., polynomial models) is the simplicity of the resulting econometric

model and its easy interpret ability. Moreover, the MARS models are reported to work satisfactorily in terms

of computational cost irrespective of dimension low, medium or high. This is very useful when it is suspected

that model inputs have varying optima across different levels of the model inputs (Crino & Brown, 2007).

2.1.1 The MARS algorithm

Like in any regression model, the objective of this methodology is to build a econometric model in order to

explain the variation of a dependent variable Y = (y1, . . . , yn)′ with a set of potential independent variables

X = (X1, . . . , Xp) with Xi = (x1i, x2i, . . . , xni)
′. In order to reach this classical objective, the MARS uses

the named basic functions (BF) of the form (x − c)+ = max{0, x − c} and (c − x)+ = max{0, c − x}, where

the subscript “+” means that the function takes only the positive value or zero in case of negative difference.

Such pairs of linear functions are called “hinge functions” (or two-sided truncated functions) and the constant c

denotes a knot, where the slope changes. The collection of all possible BFs, C, is used to construct the following

econometric model:

C = {(x− c)+, (c− x)+} with c ∈ {x1i, x2i, . . . , xni} and i = 1, . . . , p (1)

Each function is piecewise linear with a knot c at every xij , and in case of all input values are distinct, there are

np hinge functions, or equivalently 2np basic functions. Using those BFs, the model-building strategy is similar

to a classical forward stepwise regression, using as inputs the functions from the set C and their products. The

final expression of the model is as follows:

Y = β0 +

M∑
m=1

βmhm(X) + ε (2)

where hm(X) is a BF, or a product of two o more such functions, if interactions between variables are permitted

or perhaps the original predictor if have a linear impact on the dependent variable. The coefficients βm are

estimated by minimizing the sum of squared (residual) errors (SSE) similarly to a standard linear regression

model.
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2.1.2 The learning phase or forward pass

The model-training process will iteratively select and add some of hinge functions into the model (or the original

predictor). During the training process at each step, MARS selects new terms that minimize the SSE using

ordinary least squares (OLS). In this forward pass, MARS algorithm starts with a single model including only

the intercept term β0. At each subsequent step, a reflected pair of hinge functions (or an original predictor) are

selected and added to the model. The selected pair of hinge functions (or original predictor) can enter in the

model directly; alternatively, they can be multiplied by an existing basic function that is already in the model

and become new basis functions. The second case allows the interaction between/among different predictors to

be modelled. Note that a reflected pair of hinge functions always enter the model together (but may be removed

separately in the pruning process; see the pruning phase). The forward pass goes on until it meets one of many

conditions such as: (i) maximum number of model terms (chosen by the user) before pruning is reached; (ii)

the change in the SSE is too small to continue. The search of hinge functions at each steep can be done using

brute force, but this search can be sped up with a heuristic that reduces the number of parent terms to consider

(see Friedman 1993).

In general, at the end of this process we have a large model of the form of equation (1). The MARS models

obtain in this forward pass is adaptive and can exhibit a high degree of flexibility that may ultimately result in

over fitting, if no measures are taken to counteract it. To solve the overfitting problem and build a model with

better generalization ability a pruning procedure must be applied.

2.1.3 The Pruning Process

Although there are other methods, MARS typically applies a backward deletion procedure to prune the model.

Using this procedure, the second phase of this algorithm is the pruning step, where a “one-at-a-time” backward

deletion procedure is applied in which the basis functions with the least contribution to the model are eliminated

until find the best submodel. This pruning is based on a generalized cross-validation (GCV) criterion originally

propose by Craven & Wahba (1979) and adapted by Friedman & Silverman (1989) named Lack-of-Fit (LOF).

Note that the raw SSE using on the training data is inadequate for comparing models, because the SSE always

increase as MARS terms are dropped and therefore use this criterion in the backward pass always select the

largest model. Therefore, the GCV criterion is used to find the overall best model from a sequence of fitted

models, where a larger GCV value tends to produce a smaller model, and vice versa. The GCV criterion is

estimated as the LOF criterion (Hastie and Tibshirani 2001). At each step, the algorithm removes a term in

the model that results in the smallest increase in the sum of squared error, obtaining an optimal model. This

criterion is defined as,

GCV =
1

n

∑n
i=1(yi − ŷi)2[
1− Ĉ(M)

n

]2 (3)

where is a complexity function, and Ĉ(M) = C(M) + dK and C(M) is the number of parameters being

estimated (the number of linearly independent basis functions without the intercep term); K is the number
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of knots selected in the forward process, and d represents a cost for each basic function optimization: usually

d = 2, if the model does not involve interaction terms, and d = 3, otherwise (Friedman, 1991). Thus, the GCV

formula adjusts the SSE to take into account the flexibility of the model. Larger values of d result in fewer knots

and smoother function estimates. The best MARS approximation is the one with the highest GCV value. In

order to get a measure similar to R2, the GCV coefficient can be standardized and a new coefficient is defined

as:

GRSq = 1− GCV

GCV.tot
(4)

where GCV.tot is the GCV of a model with only the intercept term. In this pruning phase, the researcher can

determine the maximum number of knots considered, the minimum number of observations between knots, and

the highest order of interaction terms. In addition, a critical strength of MARS is that it can train models

that are very easily interpretable. However, increasing the flexibility generally reduces the interpretability. If

interpretability is not a key consideration, then perhaps a more flexible algorithm such as random forest should

be used instead. This is the reason why the degree of interaction is usually limited to one or two but rarely

above. A useful option in the MARS procedure is to set an upper limit on the order of interaction. For example,

one can set a limit of two, allowing pairwise products of piecewise linear functions, but not three- or higherway

products. This can aid in the interpretation of the final model. An upper limit of one results in an additive

model.

Parameter options

The basic inputs to the MARS algorithm are the predictors and the response variable. A set of parameter

options can be pre-specified by the researcher: The order of interaction; the inclusion of variables linearling;

the maximum or minimum of nodes and the number of observations between nodes are the more relevant.

(Friedman, 1991) suggest defaults values for this parameters that we will select in the Monte-Carlo section. this

doubles the number of predictors, forces that into the range of 20 to 200, and finally adds 1 for the intercept

nk = min(200,max(20, 2 ∗ ncol(x))) + 1

No regression modeling technique is best for all situations. The algorithm has pros and cons (reference).

By example, MARS models are simple to understand and interpret. MARS is suitable for handling fairly large

datasets. As an example, the earth test suite has additive models with 8 million cases and 100 variables, and

80 million cases and 2 variables. Bigger models are possible Milborrow. Derived from mda:mars by T. Hastie

and R. Tibshirani (2018). The algorithm has overfitting problem and has propension to identify knots in case

of linear relationship. In order to identify changes not significant in the slope coefficients, some test can be used

(By example LR test). Appendix I include a technical note about this process.

Nota: El algoritmo MARS tiende a ’dividir’ variables que son lineales. Esto es debido a que usa un criterio

basado en reducir el GCV. En todo caso, aunque MARS ’rompa’ una variable en varios trozos, es necesario

realizar un test (LR por ejemplo) para evaluar si los coeficientes asociados a la variable dividida son significa-

tivamente distintos.
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Table 1: Example Forward and Backward of MARS algorithm

Forward pass Backward

Model1 Model2 Model3 Model4 Model5 Model4 Model3

(Intercept) 1.917∗∗∗ 2.668∗∗∗ 3.766∗∗∗ 3.794∗∗∗ 3.757∗∗∗ 3.794∗∗∗ 3.766∗∗∗

(0.061) (0.063) (0.371) (0.370) (0.370) (0.370) (0.371)

(X − 0.5857)+ 0.685∗ 4.096∗∗∗ 4.410∗∗∗ 3.966∗∗ 4.410∗∗∗ 4.096∗∗∗

(0.281) (1.169) (1.180) (1.208) (1.180) (1.169)

(0.5857−X)+ −5.159∗∗∗ −7.531∗∗∗ −7.584∗∗∗ −7.513∗∗∗ −7.584∗∗∗ −7.531∗∗∗

(0.202) (0.814) (0.812) (0.812) (0.812) (0.814)

(X − 0.2042)+ −3.107∗∗ −3.231∗∗ −3.067∗∗ −3.231∗∗ −3.107∗∗

(1.034) (1.034) (1.036) (1.034) (1.034)

(X − 0.9755)+ −20.731 −44.955∗ −20.731

(11.907) (18.951) (11.907)

(X − 0.9337)+ 8.651

(5.273)

R2(= RSq) 0.0000 0.7513 0.7569 0.7587 0.7604 0.759 0.757

0.7513 0.0055 0.0019 0.0016

GRSq 0.0000 0.7463 0.7494 0.7488 0.7479 0.7462

0.7463 0.0031 -0.0006 -0.0009

∗∗∗p− value < 0.001, ∗∗p− value < 0.01, ∗p− value < 0.05

2.1.4 Illustration

To show how the algorithm works, a data set is generated,

yi = 1 + 4(xi − 0.2)+ + 8(0.2− xi)+ − 3(0.6− xi) + εi (5)

The DGP consider two knots c =0.2, 0.6, with εi = N(0, 1) and i = 1, ..., n = 400.

Table 1 show the OLS estimate models with the terms selected by MARS algorithm in each step. In the first

phase, the algorithm incorporate in an iterative process a total of 6 terms in the forward pass (Models 1-5). In

each step select the term that maximize the RSq = R2. The Model 1 is the baseline model and only consider

the intercept. The Model 2 select the knot 0.5857 and two terms are incorporate to the model (X − 0.5857)+

and (0.5857−X)+ with an increase of RSq of ∆RSq = 0.7513. The Model 3 select the knot 0.2042 and include

the term (X − 0.2042)+. In this case the the ∆RSq = 0.0055. The Model 4 select the term (X − 0.9755)+ with

an increase of ∆RSq = 0.0019 and the Model 5 select (X − 0.9337)+ with an increase of ∆RSq = 0.0016. The

process stop because the RSq increase with the next term (X − 0.73776)+ is less than 0.001, a value prefixed

by the researcher ,∆RSq=0.00086 (This model is not include in the Table to save space). In the second phase,

the MARS algorithm prune the Model 5 using the GRSq as criteria (with d=2). A priory, any of the terms

selected in the forward pass can be removed. In our case, note that for Model 4 and Model 5 the ∆GRSq values

are negative. Finally the Model 3 is the model selected by the MARS algorithm.

Figure 1 show the algorithm steps. In firs place the red line in Figure 1a show the model before to pruning.

In second place the black line in Figure 1b show the final model after to pruning. The knots identify in teh
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final model by the algorithm (0.5857 and 0.2042) are so close to the true knots (0.6 and 0.2).

Figure 1: Example MARS algorithm

(a) Forward pass (b) Final pruning model
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