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Abstract:  
The present paper studies the role of knowledge accessibility on individuals’ 

productivity, by exploiting a large dataset of EPO inventors over time and across 

European cities. The paper simultaneously investigates the role of different layers with 

which inventors interact and from where they learn and source ideas: the 

city/metropolitan areas where they resides, the firm/organization for which they work, 

and their network of collaborators. We take therefore a multilevel approach to the 

phenomenon. In doing so, we are bridging two traditions, namely the economics of 

knowledge externalities and the literature exploiting the theoretical background of 

labour economics to explain knowledge flows, currently developing on parallel strands. 

Results suggest that inventors take advantage of the knowledge pools at each layer they 

are embedded in. City-level knowledge diffusion is stronger than firm-level knowledge 

and network-level one. However, when the type of knowledge accessed and produced is 

taken into account, network effects prevail, suggesting that complex knowledge diffuses 

only within strong social connections, while simple one diffuses equally across actors 

within cities.  
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1. Introduction 

Knowledge diffusion plays a central role in many disciplines in social sciences. Most of 

them reach the conclusion that the production of new knowledge arises from the 

combination and recombination of existing ideas ((Weitzman, 1998; Fleming and 

Sorenson, 2001). The increasing “burden of knowledge" leads individuals to specialize 

and become more dependent on other people's skills to innovate (Jones, 2009). 

Meanwhile, teamwork is seen as a way to realize scale economies in knowledge 

production and share risks (Powell and Grodal, 2005; Wutchy, Jones and Uzzi, 2007; 

Singh and Fleming, 2010; Jaravel, Petkova and Bell, 2018). Even children who are more 

exposed to innovation (e.g., growing up in areas with more inventors) are more likely 

to become inventors themselves (Bell et al., 2017). Hence, scholars have clearly 

established that inventors’ productivity depends both on their own knowledge and 

human capital, as well as on interacting with other inventors and learning from them 

(Lucas, 2009; Lucas and Moll, 2014; Akcigit et al., 2018). 

However, the way in which innovators access knowledge to be recombined has been 

way less investigated. Economic geography, regional science and the economics of 

innovation have widely investigated knowledge diffusion and recombination at the 

regional/local level (Boschma, 2005; Antonelli, Patrucco and Quatraro, 2011). The 

concept of knowledge externalities has become commonplace in the field to explain 

gains from agglomeration economies and industry concentration. The role they play 

for the productivity, competitiveness and growth of firms, regions and countries is still 

a debated topic, despite the vast amount of studies that have flourished in recent 

years (for a review of these studies, see Antonelli et al., 2016). In deepening the 

understanding of what affects knowledge to flow among individuals, this literature 

soon advocated for the territorial boundaries of such a process, giving birth to 

concepts such as localized knowledge spillovers (Jaffe, Trajtenberg and Henderson, 

1993) or Regional Innovation Systems (Asheim and Coenen, 2005, 2006). 

Agglomerations generate opportunities for repeated face-to-face contacts and 

exchanges of knowledge and ideas (Amin and Cohendet, 2005). It is within this strand 

of literature that the concept of stock of knowledge or knowledge base developed, as 



 

measures of the knowledge potential of economic agents. Individuals, e.g. 

entrepreneurs, can partly exploit the knowledge of other individuals simply because 

they are co-located in space, in a bond of institutions, supply chains and repetitive 

transactions and interactions (Audretsch et al., 2012; Audretsch, Lehemann and 

Hinger, 2015). In this context, cities are seen as platforms to reduce the costs of 

interacting and allow accessing spatially sticky knowledge (Storper and Venables, 2004; 

Carlino and Kerr, 2014). As a matter of fact, cities have been traditionally considered 

focal points of creative activity and further innovation (Jacobs, 1969, p. 196; Feldman 

and Audretsch, 1999; Duranton and Puga, 2001). 

More recently, researchers have questioned the idea that knowledge is “in the air” 

(Marshall, 1890) in cities and clusters. By contrast, knowledge diffusion is the result of 

planned and well-structured partnership between individuals, firms and other 

organizations (Fitjar and Rodríguez-Pose, 2017), thus highlighting the importance of 

social networks’ membership in order to access relevant pieces of knowledge at the 

local level (Uzzi, 1997, p. 199; Singh, 2005; Breschi and Lissoni, 2009) as well as their 

role to tap into non-local sources of ideas (Bathelt, Malmberg and Maskell, 2004). 

What matters most in this strand of studies is the transmission channel. Even though 

co-location and networks might be sometimes observationally equivalent, the latter 

are seen as independent from the role of the former, and sometimes it is found even 

more important in regulating knowledge flows between agents (Breschi and Lissoni, 

2001, 2009).  

In parallel to these developments, the knowledge-based view of the firm has explored 

its role in organizing and distributing knowledge and seeking for competitive 

advantage internally (Kogut and Zander, 1992). This literature defends that the mere 

existence of the firm facilitates the transferability of knowledge between individuals 

within firms’ boundaries (Allen, 1977; Teece, 1977; Grant, 1996). This is especially the 

case of knowledge of tacit nature, whose transfer between people is slow, costly and 

uncertain (Kogut and Zander, 1992). As knowledge is generally not appropriable by 

means of market transaction, the firm serves as the best platform to organize and 

share knowledge among the different individuals. To put it differently, the existence of 



 

the firm is a response to the need of coordinating efforts of individual specialists who 

possess many different types of knowledge, and need to exchange it among them to 

produce new ideas (Grant, 1996). 

In this framework, the contributions of this paper are manifold. First, we assess the 

importance of accessing knowledge from three different layers: the city, the firm, and 

the individual’s network. While we expect the three levels to be positive and 

significant, we are agnostic on which layer is going to dominate. As shortly reviewed 

above, extant research generally focuses on only one level of analysis while neglecting 

others, with the empirical consequences of ignoring unobserved heterogeneity coming 

from other layers. Moreover, focusing on one level and ignoring the others also come 

with the caveat of neglecting the possibility that the three levels of analysis may 

interact. In the present paper, we do not only assess the impact of each layer while 

controlling for the other two to avoid confounding effects, but we also gauge the 

possible complementary or substitutive relation between layers. Next, in our analysis 

we explicitly differentiate between quantity and quality – by means of forward 

citations to patents, a typical indicator for patent quality and value (Jaffe and de 

Rassenfosse, 2017). Finally, we exploit the characteristics of the knowledge accessed 

by differentiating between different degrees of complexity (Sorenson, Rivkin and 

Fleming, 2006; Balland and Rigby, 2017). We expect the advantages of accessing 

complex knowledge to grow the stronger are the connections between the sender and 

receiver of the message – that is, when they are socially connected, as opposed to 

when they only live in the same city. Accessing knowledge requires that the receiving 

partner makes efforts to understand it and acquire it, even correct potential errors in 

the message transmitted. These difficulties increase as the knowledge (the message) 

becomes more complex, and can only be overcome with short chains of transmission 

(within the individuals’ networks or within her organization’s boundaries). On the 

contrary, the less connected are the sender and the receiver in the social dimension, 

the larger the potential of simple knowledge to be accessed, which do not require the 

full assistance of the sender to be understood. 



 

In addressing these research questions, several interesting novelties are introduced. 

First, we extend the research strand about knowledge generation at the individual 

level, which is increasingly considered as the fundamental level of analysis for 

exploring knowledge creation mechanisms (Fleming, 2001), but still under-investigated 

– except for the few papers mentioned above, such as Akcigit et al. (2018) and Jaravel, 

Petkova and Bell (2018). In particular, as a novelty in the literature, we explore directly 

the effect of the pool of local knowledge on individuals’ performance. Specifically, we 

concentrate on inventors, a class of highly skilled, highly educated knowledge workers 

who are behind the production of technological innovations spurring economic growth 

and well-being.  

Our understanding of the factors driving and influencing inventors’ production is still 

modest (Giuri et al., 2007). However, the topic deserves paramount attention because 

it is within individuals that knowledge is created and among individuals that it is 

exchanged (Grant, 1996, p. 199; Fleming, 2001; Fleming and Szigety, 2006). In the last 

decade, attention towards individual inventors and their activities grew, bringing to 

the light a series of studies investigating the individual-level determinants of inventive 

activity (notable examples are Hoisl, 2007; Hussinger, 2012; Zwick et al., 2017). 

However, apart from a few studies by Fleming and Sorenson (Fleming and Sorenson, 

2001, 2004) there are not attempts to account for individual inventor performance 

with the toolkit of the economics of knowledge literature. 

Second, we focus our territorial part of the analysis at the level of European cities or 

metropolitan areas1, contrary to previous studies on the geography of innovation, 

which has focused on larger NUTS2 areas – some of them barely urbanized. There is 

substantial theory and evidence that innovation is primarily an urban phenomenon 

(Bairoch, 1988; Carlino and Kerr, 2014). By contrast, most empirical studies on the 

geography of innovation have used administrative boundaries such as NUTS2 regions 
                                                 
1 Even though these are labelled metropolitan areas or metropolitan regions, for the 
sake of simplicity we will call them cities in the remaining of the paper, following a 
large tradition in economics on the relationship between cities, or urban areas, and 
innovation, starting from Jane Jacobs (Jacobs, 1961). It is well documented that 
innovation is, by large, an urban phenomenon (Bairoch, 1988). 



 

in Europe or US States. This chosen spatial scale of analysis should reflect more closely 

the dynamics of knowledge interactions and innovation, and complements the existing 

empirical evidence at the level of regions.  

Our empirical analysis uses an underexploited database of disambiguated EPO 

inventors residing in Europe, from 1978 to 2010 (Pezzoni, Lissoni and Tarasconi, 2014). 

Using patent data and the information on inventors, their city of residence, their 

collaborators, and the firms for which they work listed in patent documents, we build 

an unbalanced panel at the individual, inventor level regressing inventors’ 

performance on several measures of knowledge stock at the level of the city, the firm, 

and the individual network of collaborators. Our setting allows us to incorporate a 

large list of fixed effects (city, time, sector, and individual), which allows us to rule out 

the influence of confounding factors. 

We find evidence on the importance of city-level knowledge stocks on inventors’ 

patent production. Doubling the city stocks increases individuals’ productivity by 4-5%. 

These estimates are in line with (though somewhat larger than) elasticities on the 

effects of agglomeration economies on wages (Rice et al., 2006). We also find positive 

effects for the firm-level knowledge stocks, but less preponderant in terms of 

magnitude. Interestingly, when patent quality is taken into account, the picture 

changes upside down: what matters the most for quality-adjusted patent production is 

the network-level stock, while the city-level stock is not significant, suggesting that 

closer relations are critical to share knowledge which will allow individuals to produce 

high-quality ideas. Further, when exploring whether this is explained by the complexity 

of the message transmitted, we find some evidence supporting it (although relatively 

small): the effect of city-level knowledge stocks on patent production and quality-

adjusted patent decrease as the level of complexity of the stocks grows. Meanwhile, 

the effect of network-level stocks on patent and quality-adjusted patent production 

increases with knowledge complexity – especially for the latter, suggesting that close 

and strong ties between the sender and the receiver of the message helps in 

transmitting complex ideas and in transforming them into high value innovations. 



 

In the next Section, we review the literature presented above. Section 3 presents our 

methodological approach, while Section 4 describes the data building process and the 

final dataset. Finally, Section 5 outlines the preliminary results and conclusions follow.  

 

2. Literature review 

The first economist to cast attention on the role of individuals as engine of knowledge 

dynamics was Joseph Schumpeter, clarifying that invention and innovation are two 

different moments. The first moment is that of individual creativity, whereas the 

second one concerns selection, diffusion and creation of wealth, and is much more 

‘systemic’ (Schumpeter, 1939; Fleming and Szigety, 2006). Similarly, the innovative 

dynamics of a system can be divided into a technological production routine, and a 

knowledge production one, where the latter enters as a key factor in the former. The 

series of prominent contributions by Zvi Griliches established the methodologies to 

investigate these routines separately, namely the Technology Production Function 

(TPF) (Griliches, 1979) and Knowledge Production Function (KPF) (Jaffe, 1986). 

Establishing the TPF and the KPF enabled the appreciation of the role of knowledge as 

the hidden factor boosting firms’ productivity thanks to the virtuous presence of 

externalities or spillovers, i.e. knowledge pieces that can be used by others than the 

creator at lower than equilibrium-cost (Griliches, 1995, 1998; Pakes and Griliches, 

1998). At the very earth of this approach there are (at least) two pillars: the “special” 

characteristics of knowledge as an economic good (Arrow, 1962) and its recombinant 

nature (Weitzman, 1998). Knowledge as a non-rival and only partially appropriable 

good motivates a theory of the existence of knowledge externalities. The fact that 

knowledge creation happens through recombination of existing knowledge bundles 

leads to appreciate the interactive and collective nature of knowledge, whose 

generation is therefore bounded within the social and geographical limit of 

interactions between individuals. Soon, knowledge evolution has been appreciated as 

a cumulative, path-dependent, and interactive process (Dosi, 1982; Nelson and Winter, 

2004). Therefore, the amount and quality of the knowledge produced in a system 



 

determines the extension and composition of the knowledge externalities embedded 

within its boundaries (Boschma, Balland and Kogler, 2015). In turn, internal 

characteristics of firms embedded into the systems determine their ability to absorb, 

metabolize and put in production external knowledge – knowledge externalities have a 

cost (Cohen and Levinthal, 1990; Antonelli, 2008).  

By virtue of knowledge collective and interactive nature and of its sticky and tacit 

components (Cowan, David and Foray, 2000) knowledge dissemination strongly decays 

with space. Consequently, the knowledge localization explains the propensity for 

innovative activities to cluster geographically (Jaffe et al., 1993; Audretsch and 

Feldman, 1996; Audretsch and Stephan, 1999), and the spatial heterogeneity in 

quantity and quality of technological production (Hidalgo and Hausmann, 2009; 

Balland and Rigby, 2017). The consequence of the increasing attention upon the 

bounding and rooted aspects of knowledge dynamics induced a dedicated series of 

empirical studies on so-called Regional Innovation Systems (Asheim and Coenen, 2005) 

and the interplays between various forms of proximity (Boschma, 2005; Balland, 

Boschma and Frenken, 2015). The coordinated governance of the territorial knowledge 

potential emerged as a specific issue (Antonelli, Patrucco and Quatraro, 2008).  

On a parallel, more recent strand, some authors cast scepticism on the theory of 

knowledge externalities. The problematic aspect of such a theory carried out at an 

aggregated level is that it treats generation and appropriation of 

externalities/spillovers as a ‘black box’, whereas, instead, a multiplicity of forces are at 

stake (Agrawal, Cockburn and McHale, 2006; Rodríguez-Pose and Crescenzi, 2008). 

Miguélez and Moreno (2013) perfectly synthesises these positions: “As Zucker, Darby 

and Armstrong (1998) or Breschi and Lissoni (2009) put it, in the absence of large levels 

of local labour mobility of super-skilled labour and research networks of formal 

collaboration, informal linkages and serendipitous encounters explain only a relatively 

minor part of the localization of knowledge flows. Thus, knowledge flows might be a 

powerful agglomeration force and might basically occur at the regional level, but not in 

the form of spillovers, rather, through well-regulated knowledge exchanges 

deliberated on a market basis (Breschi and Lissoni, 2001).” Breschi and Lissoni’s series 



 

of papers focused on the foundational empirical demonstration of the existence of 

localized knowledge spillovers – Jaffe et al., 1993 paper – where, for the first time, the 

paper trails of knowledge have been identified exploiting patent citation data. The 

fundamental challenge to Jaffe’s work was that looking at inventors as knowledge 

carriers, and tracking their mobility, much variance in citations patterns was explained. 

The limit of this approach seems to consist of the poor attention paid to exploring the 

context into which mobility takes place. It is clear in fact that mobility within 

knowledge rich contexts is likely to yield far more results than mobility in knowledge 

poor context. For the same token, this literature does not fully explore the direction of 

mobility: mobility from knowledge-poor context to knowledge-rich ones is likely to 

yield better results than mobility from knowledge rich context to knowledge poor 

ones. A recent contribution by Fernandez-Zubieta and colleagues exploring a related 

issue, i.e. the effects of mobility on academic carriers, has implemented this distinction 

(Fernández-Zubieta, Geuna and Lawson, 2016). We aim at elaborating a “contextual” 

approach that tries to combine the analysis of the effects of the context along the lines 

of the Griliches-Jaffe tradition together with the attention towards the specific 

channels of knowledge diffusion suggested by Breschi and Lissoni.  

Onto this track, a new literature focusing on inventor networks flourished (Singh, 

2005). In particular, huge attention has been dedicated to inventor’s mobility, 

primarily labour-related (Almeida and Kogut, 1999; Breschi and Lissoni, 2009) but also 

geography and technology related (Latham et al., 2011). Indeed, the main aim of these 

research efforts, primarily exploiting the precious availability of patent data, has been 

to highlight the channels through which knowledge disseminates. An obvious 

consequence of the interest in individual-level dynamics has been a renewed attention 

on the inventor as the locus of knowledge creation, a bit forgotten by the main strands 

of the economics of knowledge. Two are the directions this literature has taken lately: 

one exploits the experimental and theoretical toolkit provided by the research on 

labour/geographical/technological mobility and networks (Hoisl, 2007; Palomeras and 

Melero, 2010; Nakajima, Tamura and Hanaki, 2010; Latham et al., 2011; Hussinger, 

2012; Miguélez and Moreno, 2013). The other, instead, promotes individual surveys 



 

investigating psychological, educational and subjective characteristics of individual 

inventors (Mariani and Romanelli, 2007; Schettino, Sterlacchini and Venturini, 2013; 

Bell et al., 2017; Zwick et al., 2017). In this new wave of studies centred on inventors, 

the reference to the original themes of the economics of knowledge has been 

neglected. The literature on team composition and performance stands out as a partial 

exception. This strand of research investigates the complex interactions taking place 

between different typologies of knowledge backgrounds – i.e. diversity, generality and 

specialization – when they come together into a team (Taylor and Greve, 2006; 

Wuchty, Jones and Uzzi, 2007; Singh and Fleming, 2010; Graf, 2012; Melero and 

Palomeras, 2015). 

 

3. Methods 

The effort of opening the ‘black box’ of knowledge externalities has been a major step 

forward in our understanding of how knowledge disseminates, stating clearly the role 

of networks and institutions into the coordination of the knowledge dynamics (Cowan 

and Jonard, 2003, 2004). The theoretical and empirical system-level analysis within the 

framework of the economics of knowledge has also provided the necessary tools to 

understand how knowledge is created, evolves and transmutes into technological 

change (Antonelli and Colombelli, 2017). However, these traditions are developing 

along two parallel courses. Hence, the primary focus of our research is that of letting 

them touch on the ground of the studies about invention and inventors.  

We see the inventor as the ground zero of creativity. Exploiting the largely available 

and corroborated data-source of patent documents (see section 4), we set our unit of 

analysis at the inventor level. No creative action takes place into the solitude. On the 

contrary, every individual is embedded into a multiplicity of social layers. We focus on 

three of them, which, in our view, synthesize at best the complicated context most 

inventors operate in. The first layer is the network of job relationships each inventor 

builds around himself during his activity. As widely reported above, the inventor-

network has profound influences on the inventor’s choices. The second layer is the 



 

institutional dominion par excellence: the firm where the inventor is employed. The 

workplace is not only the main environment for the inventor to interact with other 

carriers of knowledge, but it is also an important driver of research trajectories. The 

third and last layer is the geographical space where the inventor operates, that is, the 

city where he lives. This layer is encompassing the other two – though not always, but 

comprehending also other relevant collective events and environments, we cannot 

directly account for. 

At each of these three layers, a multitude of forces may take place, affecting inventor’s 

choices and performance. We are interested in the role of some typical metrics of the 

economics of knowledge, oriented to quantify and qualify the magnitude and kind of 

knowledge embedded in a repository. In this paper, we will focus on the stock of 

knowledge at each layer. In our perspective, the stock of knowledge is not a measure 

of tangible assets at disposal in the knowledge production. Rather, it is an index of a 

knowledge potential embedded in the repositories (the network, the firm or the city).  

We plan to test to what extent the stock of knowledge at the city level – the level at 

which knowledge externalities have been quested for – sustains the inventor’s creative 

effort when the stocks of the other two layers (the firm and the network) are 

controlled for. From the literature focusing on networks and mobility’s perspective, 

there should be little evidence of any significant impact of the territorial level once the 

channels of knowledge dissemination are controlled for (Breschi and Lissoni, 2009). 

Instead, institutional and formal channels (labour-related mechanisms) could not be 

enough to account for all the creative knowledge potential of a city. We will 

investigate the direct impact of both the network and the institutional and territorial 

environments, with a specific attention to the interactions between them. The 

rationale is that a fertile pool of knowledge may be metabolized and digested 

differently by inventors equipped with different network and institutional knowledge 

potential. This kind of reasoning aligns with the absorptive capacity literature (Cohen 

and Levinthal, 1990).  

 



 

3.1. Econometric strategy 

Both the strand of literature investigating the consequences of networking and 

mobility on individual inventors and the stream focusing instead on individual 

characteristics, are ego-centred, i.e. they deal with one level of analysis only: the 

individual. The peculiarity of our approach, instead, is that we want to look at the 

different layers simultaneously building up the inventor’s creative environment. Such a 

pursuit entails methodological carefulness. There is a long tradition in the economics 

of education addressing the issue of hierarchical settings, i.e. settings where 

individuals are nested into groups at many layers (Raudenbush, 2009). For example, 

pupils belonging to the same school or/and to the same neighbourhood; or inventors 

belonging to the same firm or/and the same city. When the hierarchical structure of 

the data is ignored and only one layer is analysed, two implicit underlying assumptions 

are made: 1) that the salient heterogeneity takes place only within that layer and that 

other layers are more or less homogeneous, and 2) that the layer analysed is 

independent of the others (Rothaermel and Hess, 2007). In some settings, such 

assumptions may be undesirable or inappropriate. There are a number of possible 

approaches to the issue, which, in more common econometrics terms is referred as 

‘clustered data’, but two are the most famous: clustering the standard errors in a FE 

regression settings, or Multilevel Analysis (MA) (Raudenbush and Bryk, 2002; Fazio and 

Piacentino, 2010; Cameron and Miller, 2015). Even though Multilevel Analysis has seen 

only a few applications in regional economics (Fazio and Piacentino, 2010; but only 

Raspe and van Oort, 2011; López-Bazo and Motellón, 2017 in the subfield of 

economics of innovation and knowledge, at the very best of our knowledge), this 

approach has been preferred over the FEs approach in a number of settings 

(Raudenbush, 2009; Bell and Jones, 2015; Bell, Fairbrother and Jones, 2016).  

However, the big advantage assigned to the FE estimator is that it eliminates by 

definition group-invariant variables and their interactions with lower-level variables 

(Clarke et al., 2010). In so doing, any possible correlation between covariates and the 

errors due to unobserved group-invariant characteristics is avoided. In a longitudinal 

setting, the serial auto-correlation of lowest level variables can be controlled for with 



 

clustered or properly modelled autoregressive standard errors. Indeed, one critical 

point of the MA approach is that the unobserved heterogeneity is not eliminated, 

meaning that, if the model is not perfectly specified, the omitted variables bias 

threatens causal interpretation. Both Raudenbush (2009) and Bell and Jones (2015) 

suggest a robust version of MA, where variables are demeaned as in the Mundlack 

formulation of the FE estimator. When more than one group fixed effect is needed, 

sequential demeaning is allowed in balanced panels, whereas it is not feasible in 

unbalanced settings. It is, therefore, problematic to control for multiple group fixed 

effect at different levels in MA, even though it is theoretically possible. For all these 

reasons, we opt for estimating our models by means of FEs. 

 

3.2. The model 

In order to test our hypotheses, the following four-way FEs regression is going to be 

estimated: 

 
, 

where i is the inventor, f the firm, c the city, t stands for time and the s are a set of 

FEs. The three main explanatory variables account for the knowledge potential of the 

multilevel structure the inventor is embedded in, respectively the city, the firm and the 

network of past collaborators. In our specification, the multilevel structure of the data 

will be accounted with a full set of interactions of main variables of interest across 

levels and cluster-robust SE (Cameron and Miller, 2015).  

 

4. Data 

As anticipated above, we extensively exploit patent data to build our main variables of 

interest. Even though patent documents represent only a product-oriented subset of 

possible knowledge production, they represent a unique opportunity of observing the 



 

moment of creativity at wide, across individuals, territories and time. 

Methodologically, patent documents make it possible to build longitudinal datasets, 

whose potential in terms of inference is substantial. Moreover, this is the only source 

we can exploit to observe the multiple layers we are interested in: the collaboration 

network and its evolution throughout time, the inventor’s engagement with one or 

more firms and the city he/she belongs to. 

We match two different patent databases in order to retrieve all the necessary 

information about our three layers of interest: the ICRIOS Patent Database (2014) 

(Coffano and Tarasconi, 2014) and the OECD HAN Database (2016). Both databases 

have the crucial feature of being the output of a process of name-disambiguation: 

inventors’ names in ICRIOS, through inventors’ IDs assigned by Pezzoni, Lissoni and 

Tarasconi (2014), and applicants’ names in HAN. Out of this matched dataset, we build 

our main variables of interest: the number of patent applications per inventor-year 

(dependent variable), and a series of knowledge (patent) stocks for i) the inventor’s 

network of collaborators in a five year window, ii) the firm-year (proxied by the 

applicant name listed in the patent document) and iii) the city-year tuples. 

Each patent is assigned to a repository (the network, the firm, and the city) with a 

whole count. This means that, for example, if a patent application is assigned to more 

than one applicant, the stock count of each of these applicants increases of one unit 

rather than half – as it would be for fractional counts. One peculiar characteristic of 

knowledge, i.e. knowledge indivisibility, supports this approach, which is free of 

problematic assumptions about the allocation of the knowledge creation effort and 

result among producers. After the assignation to each repository, the patent stock is 

discounted every year with a 15% depreciation factor (the so-called Permanent 

Inventory Method, see Hall, Jaffe and Trajtenberg, 2005).  

 

4.1. Explanatory and Dependent Variables 

City. We identify our city boundaries using EUROSTAT’s definition of “Metropolitan 

Regions”, which correspond to “NUTS 3 regions or a combination of NUTS 3 regions 



 

which represent all agglomerations of at least 250 000 inhabitants. These 

agglomerations were identified using the Urban Audit's Functional Urban Area (FUA)”. 

In turn, FUA identifies a city of > 250 000 inhabitants plus its commuting zone. We 

adopt this classification, but we add some areas excluded by the original Metropolitan 

Region definition, which emerged as relevant according to patent production rates. 

Indeed, we retained FUAs whose yearly patent production is equal to that of 

Metropolitan Regions belonging to the upper last quartile of Metropolitan Regions’ 

patent distribution (e.g. Cambridge Area). In order to locate inventors in these cities 

and compute cities’ knowledge stocks, we match our databases to the OECD REGPAT 

database (Maraut et al., 2008) which provides regionalized information (NUTS3 level 

for Europe) for all EPO inventors. 

Firm. We use the applicant name – usually the owner of the patent – listed in patent 

documents as a proxy for the firm (or other organizations, such as universities or 

research centres) for which the inventor works. Homogenised firm names come from 

the OECD HAN Database 2016, which exploits the ORCID database for applicants’ name 

harmonisation. Applicants who are individuals (physical persons) are removed from 

the analysis. Some firms are multi-establishment entities, and some of these 

establishments could be scattered in different cities. In order to account for the 

localized nature of knowledge production, i.e. its embeddedness into a territory, we 

compute the knowledge stocks together for all establishments within a given city (so 

we treat same-city establishments as a unique firm, and multi-city establishments of 

the same firm as different units). As in the majority of patent documents only the 

headquarter address is reported, we mark the presence of a firm into a territory 

thanks to the geo-localization of the inventors’ addresses employed by that applicant. 

Collaboration Network. The definition of the collaboration network needs to be set. 

We choose to consider those inventors who collaborated with the focal inventor 

within a 5-year window up to one year before the focal year. Other definitions may be 

plausible; we reasonably assume that a past collaboration remains an active source of 

knowledge for a 5-year period at most (Breschi and Lenzi, 2016). In order to quantify 



 

the network stock, we sum up the individuals’ depreciated applications stock of the 

collaborators.  

Inventor’s patent production. The dependent variable of our baseline model is a bare 

count of the yearly patent applications signed by an inventor. We only observe non-

zero counts, hence we exploit the variance in the size of each inventor’s production. 

Moreover, in order to control for individual time-invariant unobserved characteristics, 

we retain only inventors who invented at least twice.  

Inventors’ quality-adjusted patent production. As an alternative dependent variable, 

we also computed the count of high-quality yearly patent applications signed by an 

inventor. High-quality patents are defined as the top-50% patents sorted by their 

forward citations received – within a time window of 5 years after the priority year of 

the cited patent – controlling for the technological area and cohort (Waltman et al., 

2011; Wohlrabe and Bornmann, 2017). Citations data are retrieved from ICRIOS Patent 

Database (2014). DOC_DB family data is used to compute the forward citations, hence 

including direct citations coming from other EPO documents as well as citations 

coming indirectly from other non-EPO patents (but collapsed by families to avoid 

double-counting). 

As we want to explore further the non-trivial relationship between the knowledge 

embedded in each layer and inventors’ creative production, we qualify each layer’s 

knowledge stock with a measure of modular complexity, as introduced in Fleming and 

Sorenson (2001, 2004). Modular complexity describes a characteristic of each patent 

understood as bundle of recombined knowledge pieces (Weitzman, 1998). The 

construction of the modular complexity index relies on the conceptualization of 

invention as a search in a technological knowledge landscape. Landscapes are made of 

components, which in turn are measured by technological classes listed in the patent 

document. The position in the landscape represents a combination of components, 

with an associated fitness value. Creativity takes the form of a movement on the 

landscape until a position with a higher fitness appears. The outcome of the search 

process depends on one factor: the interdependence among technological 



 

components. The concept of interdependence roughly coincides with that of 

modularity or coupling, that is, when two entities are interdependent, a small change 

in one component calls for changes in the other component for the combination to 

work properly. 

We operationalize such procedure as follow. In a first step, the “Ease of 

Recombination” is computed for each technological class-year of the dataset, being 

technological classes specified as 4-digit IPCs. The “Ease of Recombination” is the ratio 

between the count of classes previously combined with the focal class, and the 

number of applications referencing to the focal class. In a second step, we calculate 

the modularity index for each patent application document: the count of technological 

classes of the focal patent divided by the sum of their Eases of Recombination – an 

inverse weighted average. In the third and final step, we compute the stock of patent 

applications at each layer – as we previously did – split by the level of modular 

complexity. More precisely, we look at the modular complexity distribution of all 

patent applications, and we assign to “low” complexity the applications belonging to 

the lower 50% of the distribution, to “medium” those belonging to the upper 50-to-

90% of the distribution, and “high” the remaining ones. Finally, we compute three 

separate stocks for each level of modular complexity, for each layer. Before running 

through this three step algorithm, we follow the recommendations by Alstott et al. 

(2017) and apply a normalization procedure, i.e. a Null Model, to the incidence matrix 

describing occurrences of technological classes within patent applications. In so doing, 

we clear the probability that two technological classes recombines from a random 

component originating from technological class and patent populations sizes. Further 

documentation is available upon request. 

All variables enter the regression models after an Inverse Hyperbolic Sine (IHS) 

transformation, which is a log-like transformation well-defined at zero (differently 

from the natural logarithm). Moreover, city and firm knowledge stocks are lagged one 

year to lessen simultaneity issues, as well as the network stock that is defined up to 

one year before the focal year.  



 

 

4.2. Controls 

We want to assure that the variables referred to the stock of patents at different levels 

only measure the layer’s knowledge capacity and its externalities dynamics, rather 

than the intensity of innovativeness. With this aim, we compute a set of patent-based 

control variables for productivity, measured as the average inventor’s productivity at 

each layer. In order to keep at a minimum the correlation with the stock variables, 

instead of the bare count we use the average number of patents in the upper 50% of 

the distribution corrected by year and technology (Waltman et al., 2011; Waltman and 

Schreiber, 2013; Wohlrabe and Bornmann, 2017). Hence, these productivity controls 

really control for efficiency and high standards of the knowledge layers.  

To smooth temporal disturbances, we compute the individual inventor’s productivity 

on a time window between t and t-4. Consequently, averages are computed at each 

layer. The network’s productivity is computed on a 5-year window from t-1 backwards, 

whereas the firm level variable is computed on a 3-year window from t-1 backwards in 

order to minimize missing values in the lag variable (very few firms invent more than 

once in consecutive years). City-level average productivity enters the regressions as 

the respective value for each city at t-1. 

Evidence of the importance of multinational firms in affecting firms and territorial 

productivity and knowledge capacity is growing (Iammarino and McCann, 2013). As 

stated by Crescenzi, Gagliardi and Iammarino (2015), “MNEs are amongst the main 

‘creators’ of new technology [...] since they represent the largest source of technology 

generation, transfer and diffusion in the world economy”. Therefore, we control if a 

firm is a multinational with a dichotomous dummy variable. Once again, we overcome 

data availability constraints exploiting the information in patent data. We set up an 

algorithm checking if firms are inventing in more than one nation, and if employed 

inventors declare to live in countries different from that of the firm’s headquarter.  

Even though we aim at controlling for other relevant socio-economic regional 

variables, most of them are not available for a long time window and at our territorial 



 

unit of analysis, without incurring in a large number of missing values. Specifically, the 

Cambridge Econometrics (CE) database partially provides NUTS3 level data (that can 

be translated to our city-level analysis by means of the EUROSTAT definition of 

Metropolitan Regions) on GVA, population and employment, which we use to compute 

gross value-added per capita (GVA pc), population density and a Herfindahl-Hirschman 

index of employment specialization. Even though we can impute some of the missing 

values, CE does not contain data at all for Switzerland, which is, instead, an important 

provider of inventors in our final dataset. We show regressions with CE controls in the 

robustness checks section. 

  

4.3. Final dataset 

The inventor-firm-city matching process generated multiple ambiguous assignations, 

e.g. more than one city or firm for inventor-year. In order to operate with unique 

assignation for each inventor-year, we set up some decision rules for the 

disambiguation algorithms we use: the one for the firm ID and for the city ID. The 

rationale behind these algorithms is continuity, i.e. we want to detect when mobility 

patterns of inventors across firms and cities are too frequent to be realistic, and we 

assign more weight to long-lasting ties in case of plausible ambiguous assignations 

(Hoisl, 2007; Nakajima et al., 2010).  

Our final dataset results in a strongly unbalanced panel of  

• 272.404 multiple inventors (inventors that applied for patents more than once) 

• 66.288 applicants (mainly firms, though not only) 

• 320 MA 

• over a total of 30 years covered, from 1980 to 2010. 

 

4.4. Descriptive evidence 

Figure 1 shows the cities considered in the present study, coloured according to their 

level of knowledge stock computed in 1980 and 2010 (the two extremes of our period 



 

of analysis). As can be seen, the cities with largest knowledge stocks are situated in the 

core of Europe. Some cities (particularly in the South of Europe) seem to converge in 

terms of knowledge stocks (they scale up to belong to the group with largest stocks). 

However, overall, the cities with the largest stocks are constant over time. Table 1 lists 

the top-10 firms considered in our study, sorted by their knowledge stocks in 2010. As 

can be seen, the top firms are usually large multinational companies, in some cases 

showing up several times in the top list as a consequence of their multi-city presence. 

Table 2 provides the descriptive statistics of our sample, while table 3 presents the 

correlation matrix. Some of the variables are highly correlated – particularly the 

network knowledge stock and the network productivity variable. However, simple 

correlations might not be adequate in a panel data framework to gauge 

multicollinearity problems, and therefore we run Variance Inflation Factor (VIF) tests 

after regressions. Fortunately, these point to the absence of collinearity problems.  

The appendix further explores our dataset. Figure A.1 in the Appendix shows that even 

though the vast majority of inventors apply for one patent a year at most, there are 

significant groups producing more than one application a year (left panel). Similarly, 

most inventors appear only twice in the dataset, but the number of multiple inventors 

appearing more than twice is not negligible. Figures A.2 to A.5 display the trends of 

knowledge stock across layers. Overall, the stocks of knowledge are increasing but 

heterogeneously across the different units of analysis. Among these figures, Figure A.3 

shows that there are many inventors without any past collaboration.  

 

 

5. Results 

Results of the 4-way FE regressions are shown in Table 4. Models 1 to 5 progressively 

plug in explanatory variables. From column 1 we learn that the effect of city-level 

knowledge stock is positive and significant. Doubling the size of the stock augments 

productivity by 4.9% – results from HIS transformed variables are  interpreted as 

elasticities. These results are not far from the ones found in economic geography when 



 

estimating agglomeration effects (Rice et al., 2006), despite not being exactly the same 

phenomenon. The following columns introduce explanatory variables in a cascading 

way. Column 2 introduces firm-level stocks, which are positive and significant, but to a 

lesser extent (way smaller elasticity). Network-level stock is introduced in column 3. 

Simultaneous consideration of the three relevant knowledge flows levels let us better 

gauge the respective coefficients than previous research. In terms of magnitude, city 

knowledge stocks are still much stronger than network-level; city-level stocks’ 

regression coefficient shrinks but still keeps its lead. Columns 4 and 5 introduce the 

remaining relevant controls, and some interesting findings emerge. First, the role of 

city-level stocks remain positive and significant, and with similar size as compared to 

estimates without controls. Inventors take also advantage of the firm-level knowledge 

pool, although the elasticity is relatively small compared to city-level stocks. Finally, 

once productivity controls are accounted for, the network-level stock diminishes its 

coefficient and becomes not significant. The negative and significant signs of controls 

regarding the firm and the city productivities are a signal that peers innovativeness 

tends to inhibit inventors capacity to produce new knowledge, instead of providing a 

stimulating work environment. In column 6 we assess the validity of the assumption of 

independence across levels by introducing interaction effects between city-, firm- and 

network-level stocks. In particular, we pursue the question of whether the different 

levels taken into account are complementary or substitutive among them. We find 

support for the hypothesis that network and city stocks are substitute (negative 

coefficient: the marginal effect of each activity decreases in the presence of the other 

activity). That is, inventors can rely on their networks when city-level knowledge stocks 

are weak (networks are not necessarily nested in cities). On the contrary, firm and 

network levels reinforce one another at the margin (positive coefficient), indicating 

positive feedbacks between high firm-level knowledge stocks and the actual 

connections of workers. This seems to suggest that firm-level knowledge stocks have 

stronger effects when its workers connect each other by means of actual collaboration 

links. Similarly, it suggests that the inventor’s ability to exploit efficiently the external 

knowledge coming from his network depends also on the knowledge capacity of his 



 

work environment. Past collaborators may overlap with current workplace colleagues, 

but only partially: the inventor’s network may stretch well beyond firm and city 

boundaries. 

 

 [Insert table 4 here] 

 

Table 5 splits the knowledge stocks in each layer according to their degree of 

complexity (low, medium and high). Again, interesting results emerge. For low and 

medium levels of complexity of the stocks, results are similar to previous tables: larger 

effects for city-level stocks, then firm-level stocks, which are also significant, and finally 

the negligible influence of network-level knowledge stocks. However, some differences 

are worth reporting. The network-level coefficient of low complexity is actually 

significant, but negative. That is, when inventors access knowledge of low complexity 

through their network, this is not only redundant (they already access it through the 

city and firm levels) but even have congestion effects: acquiring this redundant 

knowledge makes them losing precious time for being productive elsewhere. 

Interestingly, as soon as we augment the degree of complexity of the stocks, the 

network-level knowledge increases its coefficient and becomes positive, but still not 

significant. On the contrary, for high levels of complexity, knowledge resists diffusion 

when inventors access knowledge at the city level, while the coefficient remains 

strongly significant at the firm level, suggesting the importance of close interactions 

within organizational boundaries to transfer complex knowledge, where possibly 

onsite demonstrations and direct monitoring is the rule. Still, network-level knowledge 

stocks are not significantly different from zero. 

Column 4 introduces all the three complexity levels (low, medium and high) for the 

three focal explanatory variables. Results change a bit, especially for the city-levels 

stocks. However, we are reluctant to make our preferred outcome due to the huge 

collinearity between levels of complexity (especially within the city-level). 



 

 

 [Insert table 5 here] 

 

Next, table 6 switches our dependent variable by the quality-adjusted one. As 

anticipated in the introductory section, results changes upside down. From column 1 

we learn that city-level knowledge stocks do not have any effect on the number of 

high-quality patents the inventors can produce. This result suggests that if inventors 

aim to produce breakthrough ideas, they cannot rely on the knowledge stock of the 

area where they live, but only on more direct links and ties. Both the firm- and the 

network-level stocks are positive and significant now – the latter with the largest 

elasticity.  

One explanation for such results is that inventors need to access and combine the 

necessary pools of knowledge allowing them to produce breakthrough patents. These 

are usually more tacit, and therefore closer interactions and trust between the sender 

and the receiver of the messages are crucial. These pools of knowledge tend to be of 

highly complex too. To investigate this, we further split our knowledge stocks by their 

degree of complexity (low, medium and high). We indeed find that the more complex 

the knowledge stocks are, the higher their effects on high-quality patenting. This is the 

case for the network-level stocks (possibly where interactions and links between 

inventors are stronger), while no differences across complexity levels are found for the 

case of firm-level knowledge stocks. 

 

 [Insert table 6 here] 

 

In the Appendix, Tables A.1 and A.2 report some robustness checks. First, we 

substituted the establishment level variables with the firm level ones (table A.1). 

Results are very similar to those of Table 4. In Table A.2 CE controls for GVA per capita 

(economic performance), population density (agglomeration economies) and 



 

employment HH index (industrial specialization) are added, but none of them turns 

statistically significant and results are unchanged. In unreported results, we present 

the same regressions without Network Avg. Productivity. Indeed, as the correlation 

matrix in Table 3 shows, the network average productivity and the network-level 

knowledge stock are highly collinear. Although none of our variables performs with a 

VIF higher than 10 (the usual threshold for multicollinearity detection) we prefer to run 

regressions both with and without the dubious variable. 

 

6. Conclusions 

Understanding the mechanisms of knowledge diffusion is a relevant topic in economics 

and other social sciences since knowledge creation is at the very base of the innovative 

dynamics and behind the economic growth of firms, cities and countries. This research 

contributes to enriching such understanding, appreciating the complexity of the social 

structure where inventors are embedded in. We provide a novel contribution in many 

respects. First, we analyse individual inventors’ capacity to create new knowledge with 

a large, longitudinal dataset. In so doing, we apply the precious inheritance of the 

economics of knowledge as well as economic geography, mainly dealing with regions 

and firms, to the individuals. Second, we exploit the new EUROSTAT classification of 

the European territories by Metropolitan Regions in order to target more efficiently 

than before the actual locus of knowledge production. Third, we account 

simultaneously for what we believe are the three most fundamental levels where 

knowledge might flow. Combing those contributions together, we are able to state 

that, even after accounting for the knowledge potential delivered by the network of 

collaborators, and the knowledge capacity of the firm where inventors do invent, city 

knowledge diffusion stands up as a significant and sizeable force enhancing knowledge 

production. The firm-level knowledge capacity emerges as a pivotal point: it not only 

exerts a positive standalone effect on inventors’ productivity, but it also proves crucial 

for the effectiveness of the network knowledge stock and appears as an alternative 

source of knowledge with respect to the territorial environment. Finally, when the 



 

quality of the ideas produced is taken into account, and the type of knowledge 

accessed to produce them, the picture change considerably, and the network-level 

knowledge pools emerge as the most preponderant source of ideas. 
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Figures and tables 

Figure 1. Cities/metro areas considered and their distribution of knowledge stocks 
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Figure 1.A: City-level knowledge stocks 1980 Figure 1.B: City-level knowledge stocks 2010 
 
Table 1. Top-10 firms by their stock of knowledge in 2010 – with their city location 
Firm’s name Firm’s city location Stock of knowledge 2010 
PHILLIPS Eindhoven 3224.41 
BASF Mannheim 2338.96 
ROBERT BOSCH Stuttgart 2136.88 
BAYER Köln 2012.80 
SIEMENS München 1982.28 
HOECHST Frankfurt 1176.25 
SIEMENS Nürnberg 1173.57 
BASF Heidelberg 1104.59 
BAYER Düsseldorf 855.85 
CIBA GEIGY Bael 823.38 
 



 

Table 2. Descriptive statistics. 

Statistic N Mean St. Dev. Min Max  
Patents per inventor-year 818,883 1.203 0.503 0.881 6.704 
Quality-adj. patents per inventor-year 818,883 0.59 0.629 0 5 
City stock 818,883 8.266 1.326 0 10.751 
Firm stock 818,883 3.713 2.563 0 9.521 
Network stock 818,883 1.883 1.932 0 9 
City stock (low complex.) 818,883 7.284 1.305 0 9.728 
City stock (medium complex.) 818,883 7.362 1.374 0 9.861 
City stock (high complex.) 818,883 6.575 1.479 0 9.382 
Firm stock (low complex.) 818,883 2.425 2.408 0 8.46 
Firm stock (medium complex.) 818,883 2.66 2.595 0 8.891 
Firm stock (high complex.) 818,883 1.941 2.5 0 8.14 
Network stock (low complex.) 818,883 0.846 1.371 0 7 
Network stock (medium complex.) 818,883 1.09 1.593 0 9 
Network stock (high complex.) 818,883 0.683 1.42 0 9 
City avg. productivity 818,882 0.244 0.098 0 0.891 
Firm avg. productivity 818,845 0.284 0.266 0 3.886 
Network avg. productivity 818,883 0.257 0.393 0 5 
Multinational 818,883 0.65 0.477 0 1 
Specialization index 694,876 0.242 0.017 0.185 0.475 
Population density 694,404 0.507 0.313 0.025 2.12 
GVApc 694,866 4.013 0.282 1.356 4.943 
 

Table 3. Correlation Matrix 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 1            
2 0.59 1           
3 0.08 0.04 1          
4 0.19 0.13 0.36 1         
5 0.32 0.21 0.17 0.35 1        
6 0.14 0.10 0.36 0.30 0.31 1       
7 0.24 0.23 0.21 0.45 0.44 0.44 1      
8 0.28 0.24 0.14 0.31 0.78 0.30 0.50 1     
9 0.14 0.13 0.18 0.51 0.25 0.20 0.29 0.22 1    

10 0.02 0.03 0.15 0.01 0.05 0.15 0.07 0.06 0.02 1   
11 0.04 0.02 0.39 0.13 0.09 0.30 0.14 0.09 0.05 0.35 1  
12 0.08 0.04 0.68 0.23 0.13 0.29 0.19 0.12 0.13 0.21 0.23 1 

Note : 1: Patents per inventor-year; 2: Quality-adj. patents per inventor-year; 3: City stock; 4: 
Firm stock; 5: Network stock; 6: City avg. productivity; 7: Firm avg. productivity; 8: Network 
avg. productivity; 9: Multinational; 10: Specialization index; 11: Population density; 12: GVApc 



 

Table 4. Baseline results. 4-ways FE OLS regression with clustered standard errors at 
the city level 

 Dependent variable: applications per Inventor-Year 
 (1) (2) (3) (4) (5) (6) 
City Stock  0.049*** 0.045*** 0.041*** 0.047*** 0.046*** 0.046*** 

 (0.023, 
0.076) 

(0.020, 
0.070) 

(0.017, 
0.066) 

(0.022, 
0.071) 

(0.021, 
0.070) 

(0.023, 
0.070) 

Firm Stock   0.004* 0.002 0.010*** 0.009*** 0.013 

  (-0.0001, 
0.009) 

(-0.002, 
0.006) 

(0.006, 
0.013) 

(0.005, 
0.013) 

(-0.003, 
0.029) 

Network Stock   0.008*** 0.002 0.002 0.002 

   (0.003, 
0.012) 

(-0.002, 
0.006) 

(-0.002, 
0.007) 

(-0.013, 
0.017) 

Firm Avg 
Productivity 

   -0.184 -0.182 -0.279** 

    (-0.457, 
0.090) 

(-0.457, 
0.094) 

(-0.547, -
0.011) 

City Avg 
Productivity 

   -0.140*** -0.139*** -0.114*** 

    (-0.164, -
0.116) 

(-0.163, -
0.115) 

(-0.136, -
0.092) 

Network Avg 
Productivity 

   0.040*** 0.040*** 0.029*** 

    (0.026, 
0.054) 

(0.026, 
0.054) 

(0.019, 
0.039) 

Multinational 
Firm (T/F) 

    0.042*** 0.038*** 

     (0.034, 
0.051) 

(0.030, 
0.046) 

Firm Stock  * City 
Stock 

     -0.001 

      (-0.003, 
0.001) 

Network Stock * 
Firm Stock 

     0.004*** 

      (0.002, 
0.005) 

Network Stock * 
City Stock 

     -0.002** 

      (-0.004, -
0.00004) 

Observations 818,883 818,883 818,883 818,845 818,845 818,845 
Inventor, firm, 
city & time FEs YES YES YES YES YES YES 

Adjusted R2 0.227 0.227 0.227 0.228 0.229 0.301 
 

 



 

Table 5. Complexity. 4-ways FE OLS regression with clustered standard errors at the 
city level 
 Dependent variable: applications per Inventor-Year 
 (1) (2) (3) (4) 
City stock low complex. 0.031***   0.013 

 (0.008, 0.053)   (-0.017, 
0.043) 

Firm stock low complex. 0.013***   0.004** 

 (0.010, 0.017)   (0.0005, 
0.008) 

Network stock low 
complex. -0.006***   -0.005*** 

 (-0.009, -
0.003)   (-0.008, -

0.002) 
City stock medium complex.  0.034***  0.025 

  (0.011, 0.056)  (-0.006, 
0.056) 

Firm stock medium 
complex.  0.018***  0.013*** 

  (0.015, 0.021)  (0.010, 0.016) 
Network stock medium 
complex.  0.001  0.002 

  (-0.003, 
0.005)  (-0.002, 

0.005) 
City stock high complex.   0.009 -0.002 

   (-0.006, 
0.025) 

(-0.020, 
0.016) 

Firm stock high complex.   0.017*** 0.012*** 
   (0.014, 0.020) (0.008, 0.015) 
Network stock high 
complex.   0.002 0.002 

   (-0.003, 
0.008) 

(-0.003, 
0.008) 

City Avg Productivity -0.204 -0.246* -0.197 -0.248* 

 (-0.478, 
0.069) 

(-0.517, 
0.025) 

(-0.458, 
0.064) 

(-0.522, 
0.025) 

Firm Avg Productivity -0.113*** -0.119*** -0.113*** -0.122*** 

 (-0.134, -
0.092) 

(-0.140, -
0.097) 

(-0.134, -
0.092) 

(-0.143, -
0.101) 

Network Avg Productivity 0.054*** 0.042*** 0.041*** 0.042*** 
 (0.040, 0.069) (0.030, 0.055) (0.028, 0.054) (0.032, 0.053) 
Multinational Firm (T/F) 0.037*** 0.036*** 0.037*** 0.035*** 
 (0.029, 0.045) (0.028, 0.044) (0.029, 0.045) (0.027, 0.043) 
     
Observations 818,845 818,845 818,845 818,845 
Inventor, firm, city & time 
FEs YES YES YES YES 

Adjusted R2 0.301 0.301 0.301 0.302 
 



 

Table 6. Quality-adjusted patents and complexity. 4-ways FE OLS regression with 
clustered standard errors at the city level 
 Dependent variable: quality-adjusted applications per Inventor-

Year 
 (1) (2) (3) (4) 
City Stock 0.006    

 (-0.029, 
0.040)    

Firm Stock 0.005**    

 (0.0003, 
0.009)    

Network Stock 0.017***    
 (0.014, 0.020)    

City stock low complex.  0.024   

  (-0.009, 
0.057)   

Firm stock low complex.  0.007***   
  (0.003, 0.010)   
Network stock low 
complex.  0.005**   

  (0.001, 0.009)   
City stock medium complex.   0.012  

   (-0.018, 
0.042)  

Firm stock medium 
complex.   0.010***  

   (0.006, 0.013)  
Network stock medium 
complex.   0.012***  

   (0.008, 0.016)  
City stock high complex.    -0.007 

    (-0.027, 
0.013) 

Firm stock high complex.    0.007*** 
    (0.003, 0.011) 
Network stock high 
complex.    0.014*** 

    (0.009, 0.019) 
City Avg Productivity 0.205* 0.165 0.142 0.164 

 (-0.006, 
0.416) 

(-0.048, 
0.377) 

(-0.074, 
0.358) 

(-0.054, 
0.383) 

Firm Avg Productivity -0.349*** -0.344*** -0.346*** -0.342*** 

 (-0.396, -
0.301) 

(-0.389, -
0.298) 

(-0.392, -
0.300) 

(-0.387, -
0.298) 

Network Avg Productivity -0.169*** -0.116*** -0.136*** -0.129*** 

 (-0.201, -
0.137) 

(-0.148, -
0.084) 

(-0.165, -
0.107) 

(-0.155, -
0.103) 

Multinational Firm (T/F) 0.028*** 0.027*** 0.027*** 0.028*** 
 (0.018, 0.038) (0.018, 0.037) (0.017, 0.037) (0.018, 0.038) 



 

     
Observations 818,845 818,845 818,845 818,845 
Inventor, firm, city & time 
FEs YES YES YES YES 

Adjusted R2 0.275 0.274 0.275 0.275 
 

 



 

Appendix 

Figure A.1. Even though the vast majority of inventors apply for one patent a year, 
there are significant groups producing >1 application a year (left panel). Similarly, most 
inventors appear only twice in the dataset, but the number of multiple inventors 
appearing >2 is not negligible. 

 



 

 
Figure A.2. Mean Firm and Establishment Knowledge Stock across years and MRs. The 
overall Pearson Correlation Coefficient is 0.85, indicating that the two measures are 
indeed strongly related, but still they measure slightly different aspects 

 



 

 

Figure A.3. Mean of the Network Stock and Network Size, 1st and 3rd quartile 

 



 

Figure A.4. Mean Establishment Stock across Countries. 

 
Figure A.5. Mean MR Stock across Countries. 

 



 

 

Table A.1. Robustness check (1) 

4-ways FE OLS regression with clustered SE by MR. Robustness check with FIRMstock  
 Dependent 

variable:   
 Log of application per Inventor-Year 
 (1) (2) (3) (4)  
City Stock (lag 1) 0.037*** 0.035*** 0.041*** 0.040*** 
 (0.012) (0.012) (0.012) (0.012)      
Large Firm Stock (lag 1) 0.016*** 0.016*** 0.014*** 0.014*** 
 (0.003) (0.003) (0.003) (0.003)      
Network Stock (lag 1, 5-years window) 0.013*** 0.007*** -0.009*** -0.014*** 
 (0.005) (0.002) (0.003) (0.003)      
Firm Avg Productivity (lag 1, 3-years window) -0.079*** -0.081*** -0.071*** -0.072*** 
 (0.005) (0.006) (0.005) (0.005)      
MR Avg Productivity (lag 1, 3-years window) 0.045 0.048 0.041 0.042 
 (0.044) (0.044) (0.046) (0.046)      
Network Avg Productivity (lag 1, 5-years 
window) -0.017**  -0.011*  

 (0.007)  (0.006)  
     
Multinational Firm (T/F) 0.029*** 0.029*** 0.029*** 0.029*** 
 (0.003) (0.003) (0.004) (0.004)      
Network Stock * Firm Stock (lag 1)   0.003*** 0.004*** 
   (0.001) (0.001)      
Network Stock * MR Stock (lag 1)   -0.001 -0.001 
   (0.001) (0.001)      
Firm Stock (lag 1) * MR Stock (lag 1)   -0.002** -0.002** 
   (0.001) (0.001)       
Observations 766,336 766,336 766,336 766,336 
R2 0.487 0.487 0.487 0.487 
Adjusted R2 0.196 0.196 0.196 0.196 
Residual Std. Error 0.334  0.334  0.334  0.334   
Note: *p<0.1; **p<0.05; ***p<0.01 
 

 



 

Table A.2. Robustness check (2) 

4-ways FE OLS regression with clustered SE by MR. Robustness check with CE controls 
 Dependent variable:   
 Log of application per Inventor-

Year 
 (1) (2)  

City Stock (lag 1) 0.031** 0.030** 
 (0.014) (0.014)    

Firm Stock (lag 1) 0.018*** 0.015*** 
 (0.002) (0.002)    

Network Stock (lag 1, 5-years window) 0.012** -0.003 
 (0.005) (0.003)    

Firm Avg Productivity (lag 1, 3-years window) -0.083*** -0.080*** 
 (0.004) (0.005)    

City Avg Productivity (lag 1, 3-years window) 0.047 0.050 
 (0.046) (0.048)    

Network Avg Productivity (lag 1, 5-years window) -0.014* -0.009 
 (0.008) (0.006)    

Multinational Firm (T/F) 0.029*** 0.029*** 
 (0.004) (0.004)    

GVA PC (lag 1) 0.006 0.003 
 (0.043) (0.044)    

Population density (lag 1) -0.234 -0.112 
 (0.335) (0.342)    

Employment Specialization (lag 1) -0.246 -0.241 
 (0.170) (0.177)    

Network Stock * Firm Stock (lag 1)  0.003*** 
  (0.001)    

Network Stock * City Stock (lag 1)  -0.002 
  (0.001)    

Firm Stock (lag 1) * City Stock (lag 1)  -0.004*** 
  (0.001)     

Observations 725,417 725,417 
R2 0.488 0.488 
Adjusted R2 0.198 0.198 
Residual Std. Error 0.334  0.334   



 

Note: *p<0.1; **p<0.05; ***p<0.01 
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